How to produce polarized antiprotons and what to do with them at FAIR

Polarized Antiproton EXperiments

dr. Paolo Lenisa
Università di Ferrara and INFN - ITALY

STORI 08, Lanzhou 16.09.08
Introduction

A Method to Polarize Stored Antiprotons to a High Degree

~ 3 years ago, we proposed a method to polarize antiprotons by „spin-filtering“
The FAIR facility at Darmstadt

New initiative, driven by the FAIR-project at GSI
The FAIR facility at Darmstadt

High Energy Storage Ring (HESR) for a beam of antiprotons
Polarized Antiprotons: a long story

- 1985 - Bodega Bay:
 “International Workshop on Polarized Antiprotons Beam”
- 2007 - Daresbury:
 “Polarized Antiprotons: How”
- 2008 – Bad Honnef:
 Heraeus Seminar: “Polarized Antiprotons”

Intense beam of polarized antiprotons never produced:

- Conventional methods (ABS) not applicable
- Polarized antiprotons from antilambda decay
 - \(I < 1.5 \times 10^5 \text{ s}^{-1} (P \approx 0.35) \)
- Antiproton scattering off liquid H\(_2\) target
 - \(I < 2 \times 10^3 \text{ s}^{-1} (P \approx 0.2) \)
- Little polarization from pbarC scattering exp’ts at LEAR

Methods not applicable to storage rings
Polarized Antiproton in Storage Rings

- Two possible methods:

 Spin-filtering Spin-flip

selective loss
discard (one) substate
(more than the other)
Spin-flip: a recent proposal

- Antiproton beam polarization by interaction with a polarized positron beam

A surprising method for polarizing antiprotons

Th. Walcher1,2,a, H. Arenhövel1, K. Arlenbacher1, R. Barday1, and A. Jankowiak4
1 Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
2 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati (Rome), Italy

Received: 26 June 2007 / Revised: 11 January 2008
Published online: 6 February 2008 - © Società Italiana di Fisica / Springer-Verlag
Communicated by E. De Sanctis

Abstract. We propose a method for polarizing antiprotons in a storage ring by means of a beam moving parallel to the antiprotons. If the relative velocity is adjusted to \(v/c \) for spin-flip is as large as about 0.2 barn as shown by new QED calculations.

2x10\(^{13}\) barn!

\[\text{\rightarrow need for} \text{ experimental test} \]
Depolarization studies at COSY: idea

• Use proton beam and co-moving electrons
• Turn experiment around: $p_e \rightarrow p_e \rightarrow p_e \rightarrow p$
 i.e. depolarization of a polarized proton beam
Depolarization studies at COSY: principle

- Use (transversely polarized) proton beam in COSY
- Switch on (detuned) electron cooler to depolarize proton beam
- Analyze proton polarization with internal D$_2$-cluster target at ANKE
Depolarization studies at COSY: cycle

$\Delta V \sim$ few 100 V

Nominal Cooler Voltage
$T_{\text{nominal}} = 250$ s

Detuned Cooler Voltage
$T_{\text{detuned}} = 250$ s

D_2 target off
Ecooler on/detuned

D_2 target on
Ecooler on
Depolarization studies at COSY: cycle

Detuned Cooler
Voltage $T_{\text{detuned}} = 50 \text{ s}$

$\Delta V \sim \text{few 100 V}$

Nominal Cooler
Voltage $T_{\text{nominal}} = 100 \text{ s}$

$f_{\text{shift}}(10\text{ s}) = 80 \text{ Hz} \rightarrow v_{\text{shift}} = 0.07 \times 10^{-3}c$

$\Delta f_{\text{broad}}(10\text{ s}) = 25 \text{ Hz} \rightarrow \Delta v_{\text{broad}} = 0.02 \times 10^{-3}c$

Negligible with respect to:

$\Delta V = 245 \text{ V} \rightarrow v_{\text{rel}} = 1.46 \times 10^{-3}c$
Depolarization studies at COSY: cycle

Detuned Cooler Voltage
$T_{\text{detuned}} = 250 \, \text{s}$

$\Delta V \sim \text{few} \, 100 \, \text{V}$

Nominal Cooler Voltage
$T_{\text{nominal}} = 250 \, \text{s}$

D_2 target off
Ecooler on/detuned

D_2 target on
Ecooler on

Number of Beam Particles

Time (s)
Depolarization studies at COSY: Polarimetry

-p-d elastic scattering detection in silicon tracking telescopes
Depolarization studies at COSY: Results (Feb. 08)

-> No effect observed: cross section must be many orders of magnitude lower than 10^{13} b!!
Polarized Antiproton in Storage Rings

- Two possible methods:

Spin-filtering

Spin-flip

selective loss

discard (one) substrate (more than the other)

selective flip

reverse (one) substrate (more than the other)
Spin-filtering

Polarization build-up of an originally unpolarized particle beam by repeated interaction with polarized hydrogen target:

Spin-filtering is known to work (FILTEX); not clear how
Spin-filtering at TSR: “FILTEX”

TSR … Test Storage Ring at MPI Heidelberg
FILTEX … Filter Experiment (1992)
Spin-filtering at TSR: “FILTEX” proof of principle

PhD of F. Rathmann
Spin-filtering at COSY: understand and optimize “FILTEX”

Spin-filtering at CERN/AD: pbar-p and pbar-d scattering

• First ever measurement of pbar-p, pbar-d spin correlations
Spin-filtering at COSY: understand and optimize “FILTEX”

Spin-filtering at CERN/AD: \bar{p}-p and \bar{p}-d scattering

Theoretical estimate of Antiproton Beam Polarization (Hadronic Interaction: Longitudinal Spin Filtering)

Experimental setup for spin-filtering tests

PAX Overview

- Superconducting quadrupole pair with cryo-pump inside
- Polarized atomic beam source
- Superconducting quadrupole pair with cryo-pump inside
- Breit-Rabi-Polarimeter
S.C. quads for low-\(\beta\) section:

(COSY ring)

PAX Overview

- Superconducting quadruple pair with cryo-pump inside
- Polarized atomic beam source
- Brent-Rabi-Polarimeter

NbTi RACETRACK COILS
- integrated gradient 24.4 T
- coil length 450 mm
- Je 220 A/mm²
- total current 606 kA
- max. magnetic field 7.1 T
- stored energy 227 kJ
- inductivity 5 H
- max. voltage 6 kV
- max. temperature 250 K
Openable storage cell for operation at AD
Polarized Atomic Beam Source + Breit-Rabi polarimeter (from HERMES-DESY)
Silicon detector for beam polarimetry

- Pbar-Beam polarization by using the (measured) analysing power of pbar-p elastic

- Modular structure
- 10 cm x 10 cm silicon wafers
- 300 μm thick
- Open cell without moving det.
- Re-use of HERMES recoil

<table>
<thead>
<tr>
<th>beam energy:</th>
<th>43 MeV</th>
<th>120 MeV</th>
<th>220 MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>total number of primary events:</td>
<td>1 M</td>
<td>1 M</td>
<td>1 M</td>
</tr>
<tr>
<td>Primary antiproton-proton elastic:</td>
<td>0.33 M</td>
<td>0.33 M</td>
<td>0.33 M</td>
</tr>
<tr>
<td>accepted: elastic</td>
<td>48 k</td>
<td>57 k</td>
<td>40 k</td>
</tr>
<tr>
<td>total 'run' time:</td>
<td>4000 sec</td>
<td>5700 sec</td>
<td>6898 sec</td>
</tr>
<tr>
<td>good (reconstructed) event rate:</td>
<td>12 evt/sec</td>
<td>10 evt/sec</td>
<td>5.8 evt/sec</td>
</tr>
</tbody>
</table>

(after spin-filtering)
Silicon detector for beam polarimetry

HERMES recoil
How to produce polarized antiprotons and what to do with them at FAIR

Polarized Antiproton Experiments

dr. Paolo Lenisa
Università di Ferrara and INFN - ITALY

STORI 08, Lanzhou 16.09.08
Study of the proton spin

Quark structure of the nucleon

\[\Phi_{\text{Corr}}^{T_w^2}(x) = \frac{1}{2} \left\{ q(x) + S_L \Delta q(x) \gamma_5 + \delta q(x) \gamma_5 \gamma^1 S_T \right\} n^+ \]

\(q = \)

\(\Delta q = \)

\(h_1 = \)

unpolarised quarks and nucleons

longitudinally polarised quarks and nucleons

transversely polarised quarks and nucleons

Well known

Known

Only glimpse
Transversity

\[h_1^q = \begin{cases} \uparrow & \text{transversely polarised quarks and nucleons} \\ \downarrow & \end{cases} \]

- Probes relativistic nature of quarks
- No gluon analog for spin-1/2 nucleon
- Different \(Q^2 \) evolution than \(\Delta q \)
- Sensitive to valence quark polarization

\(h_1 \) is chirally odd -> it needs a chirally odd partner
\[h_1 \text{ from Drell-Yan} \]

\[q\bar{q} \rightarrow \gamma^* \rightarrow l^+l^- \]

Drell-Yan

\[\frac{d^2 \sigma}{dM^2 dx_F} = \frac{4\pi\alpha^2}{9M^2s} \frac{1}{x_1 + x_2} \sum_q e_q^2 [q(x_1) \bar{q}(x_2) + \bar{q}(x_1) q(x_2)] \]

\[x_F = x_1 - x_2 \quad x_1x_2 = M^2 / s \equiv \tau \quad x_F = 2Q_L / \sqrt{s} \]

\[A_{TT} = \frac{d\sigma_{\uparrow\uparrow} - d\sigma_{\uparrow\downarrow}}{d\sigma_{\uparrow\uparrow} + d\sigma_{\uparrow\downarrow}} = \hat{a}_{TT} \sum_q e_q^2 [h_{1q}(x_1)h_{1\bar{q}}(x_2) + h_{1\bar{q}}(x_1)h_{1q}(x_2)] / \sum_q e_q^2 [q(x_1)q(x_2) + \bar{q}(x_1)\bar{q}(x_2)] \]

\[q = u, \bar{u}, d, \bar{d}, ... \]

\[M \text{ invariant Mass of lepton pair} \]
EXPERIMENT:
Asymmetric collider:
- polarized protons in HESR ($p=15$ GeV/c)
- polarized antiprotons in CSR ($p=3.5$ GeV/c)

PAX phase-II: Asymmetric collider

s=200 GeV2
h_1 from \bar{p}-p Drell-Yan at PAX

$$A_{TT} = \frac{d\sigma^{\uparrow\uparrow} - d\sigma^{\uparrow\downarrow}}{d\sigma^{\uparrow\uparrow} + d\sigma^{\uparrow\downarrow}} + \hat{a}_{TT} \sum_q e_q^2 \left[h_{1q}(x_1)h_{1q}(x_2) + h_{1\bar{q}}(x_1)h_{1\bar{q}}(x_2) \right]$$

1 year run: 10% precision on the $h_{1u}(x)$ in the valence region

- u-dominance
- $|h_{1u}| > |h_{1d}|$

$A_{TT} \approx \hat{a}_{TT} \frac{h_{1u}(x_1)h_{1u}(x_2)}{u(x_1)u(x_2)}$

PAX: $M^2/s = x_1x_2 \sim 0.02 - 0.3$

valence quarks

(A_{TT} large $\sim 0.2 - 0.3$)
Study of the Proton Electromagnetic Form-Factors

Space-Like FFs: proton data

Time-Like FFs: proton data

JLab results dramatically changed picture of the Nucleon:
- G_E^p/G_M^p decreases with Q^2
- data suggest G_E^p crosses 0 at $Q^2 \approx 8$ GeV2

Expected Q^2 behaviour reached quite early, however ...
... there is still a factor of 2 between timelike and spacelike.

Additional direct measurement needed
PAX-Phase I: fixed target experiments

EXPERIMENT:
Fixed target experiment:
- polarized antiprotons protons in CSR (p>200 MeV/c)
- fixed polarized protons target
Double polarized pbar–p annihilation

\[A_{xx} = \sin^2 \theta \left(|G_M|^2 + \frac{1}{\tau} |G_E|^2 \right) \mathcal{N}, \]
\[A_{yy} = -\sin^2 \theta \left(|G_M|^2 - \frac{1}{\tau} |G_E|^2 \right) \mathcal{N}, \]
\[A_{zz} = \left[(1 + \cos^2 \theta) |G_M|^2 - \frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \mathcal{N}, \]
\[A_{xz} = \left(\frac{d\sigma}{d\Omega} \right)_0 A_{zz} = \frac{1}{\sqrt{\tau}} \sin 2\theta \text{Re} G_E G_M^* \mathcal{N}. \]

- Most contain moduli G_E, G_M
- Independent G_E-G_M separation
- Test of Rosenbluth separation in the time-like region
- Access to G_E-G_M phase
- Very sensitive to different models (next transparencies)

E. Tomasi, F. Lacroix, C. Duterte, G.I. Gakh, EPJA 24, 419(2005)
Hard p-p polarized scattering

“The greatest asymmetries in hadron physics ever seen by a human being” (Brodsky)

“One of the unsolved mysteries of hadron physics” (Brodsky, 2005)

It would be very interesting to perform these measurements with polarized antiprotons.
Summary

• Outstanding physics case for polarized antiprotons
• PAX Collaboration took over the challenge of polarizing antiprotons

-2008-09 beam lifetime
-2009-10 SC quadrupoles
 + int.region
-2010-11 spin-filtering
-2012-13 spin-filtering
-2013 APR design
Theoretical models

Spacelike

Timelike

Electric

Magnetic

Electric

Magnetic

QCD inspired

Extended VDM

VDM: IJL
F. Iachello, PLB 43, 191 (1973)

Hohler
NPB 114, 505 (1976)

Polarization and Models in T.L. Region

\[A_y \]
\[A_{xx} \]
\[A_{yy} \]
\[R \]
\[A_{zz} \]
\[A_{xz} \]

VDM : IJL
Ext. VDM
'QCD inspired'

E. Tomasi, F. Lacroix, C. Duterte, G.I. Gakh, EPJA 24, 419(2005)
Depolarization studies at COSY: cycle