Towards Polarized Antiprotons at FAIR

http://www.fz-juelich.de/ikp/pax

Frank Rathmann
Institut für Kernphysik
Forschungszentrum Jülich

Kyoto, October 3, 2006
Outline

- PAX physics program
- Accelerator configuration for FAIR
- Towards polarized antiprotons
QCD Physics at FAIR (CDR): **unpolarized Antiprotons in HESR**

PAX → Polarized Antiprotons

Central PAX Physics Case:

Transversity distribution of the nucleon in Drell-Yan:

- FAIR as successor of DIS physics
- last leading-twist missing piece of the QCD description of the partonic structure of the nucleon
- observation of $h_1^q(x,Q^2)$ of the proton for valence quarks (A_{TT} in Drell-Yan >0.2)
 - transversely polarized proton beam or target (√)
 - transversely polarized antiproton beam (×)
PAX Physics Program

- Transversity
- Electromagnetic Form Factors
- Hard Scattering Effects
- SSA in DY, origin of Sivers function
- Soft Scattering
 - Low-\(t\) Physics
 - Total Cross Section
 - \(\bar{p}p\) interaction
Leading Twist Distribution Functions

Probabilistic interpretation in helicity base:

- $f_1(x)$
- $g_1(x)$
- $h_1(x)$

No probabilistic interpretation in the helicity base (off diagonal)

Transversity base

- $u^\uparrow = \frac{1}{\sqrt{2}} (u_R + u_L)$
- $u^\downarrow = \frac{1}{\sqrt{2}} (u_R - u_L)$

Probabilistic interpretation in helicity base:

- $q(x)$ spin averaged (well known)
- $\Delta q(x)$ helicity diff. (known)
- $\delta q(x)$ helicity flip (unknown)
Transversity

Properties:
- Probes relativistic nature of quarks
- No gluon analog for spin-1/2 nucleon
- Different Q^2 evolution than Δq
- Sensitive to valence quark polarization

Chiral-odd: requires another chiral-odd partner

Impossible in DIS

Direct Measurement

Indirect Measurement: Convolution of with unknown fragment. fct.
Transversity in Drell-Yan processes

Polarized antiproton beam \rightarrow Polarized proton target (both transverse)

\[
A_{TT} \equiv \frac{d\sigma^{\uparrow\uparrow} - d\sigma^{\uparrow\downarrow}}{d\sigma^{\uparrow\uparrow} + d\sigma^{\uparrow\downarrow}} = \hat{a}_{TT} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x_{1},M^{2})h_{1}^{\bar{q}}(x_{2},M^{2})}{\sum_{q} e_{q}^{2} q(x_{1},M^{2})\bar{q}(x_{2},M^{2})}
\]

$\sum_{q} e_{q}^{2} q(x_{1},M^{2})\bar{q}(x_{2},M^{2})$

M invariant Mass of lepton pair
Proton Electromagnetic Formfactors

- Measurement of relative phases of magnetic and electric FF in the time-like region
 - Possible only via SSA in the annihilation $pp \rightarrow e^+e^-$

- Double-spin asymmetry
 - independent G_E-G_m separation
 - test of Rosenbluth separation in the time-like region

\[A_y = \frac{\sin(2\theta) \cdot \text{Im}(G_E^* G_M)}{\left[(1 + \cos^2(\theta)) |G_M|^2 + \sin^2(\theta) |G_E|^2 \right]} / \tau \]

\[\tau = q^2 / 4m_p^2 \]
Facility for Antiproton and Ion Research (GSI, Darmstadt, Germany)

- Proton linac (injector)
- 2 synchrotrons (30 GeV p)
- A number of storage rings
 → Parallel beams operation
PAX Collider Setup

Luminosity $> 10^{31}$ cm$^{-2}$s$^{-1}$
Intense beam of polarized antiprotons was never produced:

• Conventional methods (ABS) not applicable

• Polarized antiprotons from antilambda decay
 • $I < 1.5 \cdot 10^5 \text{ s}^{-1}$ ($P \approx 0.35$)

• Antiproton scattering off liquid H_2 target
 • $I < 2 \cdot 10^3 \text{ s}^{-1}$ ($P \approx 0.2$)

• Stern-Gerlach spin separation in a beam (never tested)

• 5/2006 (Th. Walcher et al.) polarized electron beam

Spin filtering is the only successfully tested technique
Principle of spin-filtering

\[\sigma_{\text{tot}} = \sigma_0 + \sigma_{\perp} \cdot \vec{P} \cdot \vec{Q} + \sigma_{\parallel} \cdot (\vec{P} \cdot \vec{k})(\vec{Q} \cdot \vec{k}) \]

- \(\sigma_{\text{beam}} \) beam polarization
- \(\sigma_{\text{target}} \) target polarization
- \(\vec{k} \parallel \) beam direction

For initially equally populated spin states: \(\uparrow \) (m=+\(\frac{1}{2} \)) and \(\downarrow \) (m=-\(\frac{1}{2} \))

Transverse case:

\[\sigma_{\text{tot} \pm} = \sigma_0 \pm \sigma_{\perp} \cdot Q \]

Longitudinal case:

\[\sigma_{\text{tot} \pm} = \sigma_0 \pm (\sigma_{\perp} + \sigma_{\parallel}) \cdot Q \]
Principle of spin-filtering

\[\sigma_{tot} = \sigma_0 + \sigma_\perp \cdot \vec{P} \cdot \vec{Q} + \sigma_\parallel \cdot (\vec{P} \cdot \vec{k})(\vec{Q} \cdot \vec{k}) \]

- P beam polarization
- Q target polarization
- k \parallel beam direction

For initially equally populated spin states: \(\uparrow \) (m=+\(\frac{1}{2} \)) and \(\downarrow \) (m=-\(\frac{1}{2} \))

transverse case:

\[\sigma_{tot}^{\pm} = \sigma_0 \pm \sigma_\perp \cdot Q \]

longitudinal case:

\[\sigma_{tot}^{\pm} = \sigma_0 \pm (\sigma_\perp + \sigma_\parallel) \cdot Q \]

Frank Rathmann
Towards Polarized Antiprotons at FAIR
13 of 30
1992 Filter Test at TSR with protons

Experimental Setup

- Dissociator
- Beam Formation
- Sextupole
- HF-Transition
- Guide Field
- Storage Cell
- Circulating Beam
- p, α

Frank Rathmann Towards Polarized Antiprotons at FAIR 14 of 30
1992 Spin Filter Test at TSR with protons

Experimental Setup

Results

Frank Rathmann
Towards Polarized Antiprotons at FAIR

Two interpretations of FILTEX result

Observed polarization build-up: \(\frac{dP}{dt} = \pm (1.24 \pm 0.06) \times 10^{-2} \text{ h}^{-1} \)
\[
P(t) = \tanh\left(\frac{t}{\tau_1}\right), \quad \frac{1}{\tau_1} = \sigma_1 Q dt
\]
\[
\sigma_1 = 72.5 \pm 5.8 \text{ mb}
\]

Spin filtering works! But how?

1994. Meyer and Horowitz: three distinct effects
1. Selective removal through scattering beyond \(\theta_{\text{acc}} = 4.4 \text{ mrad} \) \(\sigma_{R\perp} = 83 \text{ mb} \)
2. Small angle scattering of target prot. into ring acceptance \(\sigma_{S\perp} = 52 \text{ mb} \)
3. Spin-transfer from pol. el. of target atoms to stored prot. \(\sigma_{E\perp} = 70 \text{ mb} \)
\[
\sigma_1 = \sigma_{R\perp} + \sigma_{S\perp} + \sigma_{E\perp} = 65 \text{ mb}
\]

2005. Milstein & Strakhovenko + Nikolaev & Pavlov: only one effect
1. Selective removal through scattering beyond \(\theta_{\text{acc}} = 4.4 \text{ mrad} \) \(\sigma_{R\perp} = 85.6 \text{ mb} \)
No contribution from other two effects
\[
\sigma_1 = 85.6 \text{ mb}
\]

(\(\rightarrow \) more in next talk by N.N. Nikolaev)
Spin Filtering: Present Status

Spin filtering works, but:

1. Controversial interpretations of FILTEX experiment
 • Further experimental tests necessary
 • How does spin filtering work?
 • Which role do electrons play?
 → Tests with protons at COSY

2. No data to predict polarization from filtering with antiprotons
 → Measurements with antiprotons at AD/CERN
Spin Filtering studies at COSY

Goal:
- Understanding the spin filtering mechanism:
- Disentangle electromagnetic and hadronic contributions to the polarizing cross section
Polarizing cross sections from the two models

A measurement of σ_{eff} to 10% precision requires polarization measurement with $\Delta P/P = 10\%$.

Frank Rathmann
Towards Polarized Antiprotons at FAIR
19 of 30
How to disentangle hadronic and electromagnetic contributions to σ_{eff}?

Method 1: Polarization build-up experiments

Injection of different combinations of hyperfine states

- Different electron and nuclear polarizations
- Null experiments possible:
 - Pure electron polarized target ($P_z = 0$), and
 - Pure nuclear polarized target ($P_e=0$)

<table>
<thead>
<tr>
<th>Inj. states</th>
<th>P_e</th>
<th>P_z</th>
<th>Interaction</th>
<th>Holding field</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>1\rangle$</td>
<td>+1</td>
<td>+1</td>
<td>Elm. + had.</td>
</tr>
<tr>
<td>$</td>
<td>1\rangle +</td>
<td>4\rangle$</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>$</td>
<td>1\rangle +</td>
<td>2\rangle$</td>
<td>+1</td>
<td>0</td>
</tr>
</tbody>
</table>

Strong fields can be applied only longitudinally (minimal beam interference)

- Snake necessary

AD Experiments require both transverse and longitudinal (weak) fields.

AD Experiments will be performed also with D target.

Target polarimetry requires BRP for pure electron and D polarization.
Experimental setup

- Low-beta section
- Polarized target (former HERMES target)
- Detector
- Snake
- Commissioning of AD setup
Low beta section

$\beta_{x,y}^{\text{new}} = 0.3 \text{ m} \to \text{increase in density with respect to ANKE: factor 30}$

- Shorter buildup time, higher rates
- Larger polarization buildup rate due to larger acceptance
- Use of former HERMES target (more details in A. Nass’ 9A, Fr)

S.C. quadrupoles necessary for AD experiment
ANKE vs new IP: Acceptance and Lifetime

Cross sections

- **... only hadronic**
- **- electromagnetic + hadronic**

Lifetimes

- **COSY average** $\psi_{acc} = 1$ mrad
- **...** $\psi_{acc} = 2$ mrad
Figure of Merit at new IP

Calculation based on Budker-Jülich

$T^{\text{opt}} \sim 55$ MeV
ANKE vs new IP: Polarization

Expectations based on Budker-Jülich:

- $T = 40$ MeV
- $N_{\text{inj}} = 1.5 \times 10^{10}$ protons

<table>
<thead>
<tr>
<th>PIT</th>
<th>Filter. time</th>
<th>Polar.</th>
<th>Total rate</th>
<th>Meas. Time ($\Delta P/P = 10%$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANKE</td>
<td>$2\tau = 16$ h</td>
<td>1.2 %</td>
<td>7.5×10^2 s$^{-1}$</td>
<td>44 min</td>
</tr>
<tr>
<td></td>
<td>$5\tau = 42$ h</td>
<td>3.5 %</td>
<td>5×10 s$^{-1}$</td>
<td>26 min</td>
</tr>
<tr>
<td>New IP</td>
<td>$2\tau = 5$ h</td>
<td>16 %</td>
<td>2.2×10^4 s$^{-1}$</td>
<td>1 s</td>
</tr>
<tr>
<td></td>
<td>$5\tau = 13$ h</td>
<td>42 %</td>
<td>1.5×10^3 s$^{-1}$</td>
<td>< 1 s</td>
</tr>
</tbody>
</table>
Detector concept

- Will measure beam polarization by using the polarization observables:
 - p-p elastic (COSY)
 - pbar-p elastic (AD)
- Good azimuthal resolution (up/down asymmetries)
- Low energy recoil (<8 MeV)
 - Silicon telescopes
 - Thin 5µm Teflon cell needed
- Angular resolution for the forward particle for p-pbar at AD
- AD experiment will require an openable cell
Hans-Otto Meyer’s idea

“If polarized electrons polarize an initially unpolarized beam, then, unpolarized electrons should depolarize an initially polarized beam!”

Method 2: Depolarization experiments

Electrons in ^{4}He storage cell target:
- Large analyzing power
- Large counting rates

- Distinguish electron effect from normal depolarization in COSY
- Prerequisites:
 - Large beam lifetime
 - Large polarization lifetime

New Proposal for COSY turned in this week

Prediction for ANKE/COSY (4 weeks)
AD ring at CERN

Study of spin filtering in pbar-p (pbar-d) scattering

Measurement of effective polarization cross-section
 Both transverse and longitudinal
 Variable acceptance at target
 Polarized D target

First measurement for spin correlations in pbar-p (and pbar-D)

T = 5 - 2.8 GeV
N_p = 3 \cdot 10^7
Antiproton Beam Polarization
(Hadronic Interaction: Longitudinal Case)

Model A: T. Hippchen et al.,

Model D: V. Mull, K. Holinde,

3 beam lifetimes
Ψ_{acc}=20 mrad

2 beam lifetimes
Ψ_{acc}=10-50 mrad
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 2006</td>
<td>Submission of proposal to COSY-PAC</td>
</tr>
<tr>
<td></td>
<td>Beam depolarization studies</td>
</tr>
<tr>
<td></td>
<td>(Beam lifetime studies)</td>
</tr>
<tr>
<td>Spring 2007</td>
<td>Submission of FP 7 application</td>
</tr>
<tr>
<td>Fall 2007</td>
<td>Technical proposal to COSY-PAC for spin filtering</td>
</tr>
<tr>
<td></td>
<td>Technical proposal to SPSC for spin filtering at AD</td>
</tr>
<tr>
<td>2006-2007</td>
<td>Design and construction phase</td>
</tr>
<tr>
<td>2008-2009</td>
<td>Spin-filtering studies at COSY</td>
</tr>
<tr>
<td></td>
<td>Commissioning of AD experiment</td>
</tr>
<tr>
<td>2009</td>
<td>Installation at AD</td>
</tr>
<tr>
<td>2009-2010</td>
<td>Spin-filtering studies at AD</td>
</tr>
</tbody>
</table>

Quite a challenge in front of us:

Young (and less young) polarization enthusiasts are welcome!