JUNO publications since November 2015

A. Abusleme et al., JUNO sensitivity to 7Be, pep, and CNO solar neutrinos, arXiv:2303.03910 (2023), and submitted to Journal of Cosmology and Astroparticle Physics.

A. Abusleme et al., The JUNO experiment Top Tracker, arXiv:23903.5172 (2023).

A. Abusleme et al., JUNO Sensitivity on Proton Decay p→ν¯K+ Searches, arXiv:2212.08502 (2023), and submitted to Chin. Phys. C.

J. Zhao et al., Model Independent Approach of the JUNO B8 Solar Neutrino Program, arXiv:2210.08437 (2022), and submitted to APJ.

A. Abusleme et al., Mass Testing and Characterization of 20-inch PMTs for JUNO, Eur. Phys. J. C 82 (2022) 12, 1168

A. Abusleme et al., Sub-percent Precision Measurement of Neutrino Oscillation Parameters with JUNO, Chin. Phys. C 46 (2022) 123001.

L. Bieger et al., Potential for a precision measurement of solar pp neutrinos in the Serappis Experiment, Eur. Phys. J. C 82 (2022) 779.

A. Abusleme et al., Damping signatures at JUNO, a medium-baseline reactor neutrino oscillation experiment, J. High En. Phys. 62 (2022) 82.

A. Abusleme et al., JUNO physics and detector, Progr. Part. Nucl. Ph. 123 (2022) 103927.

A. Abusleme et al., Prospects for Detecting the Diffuse Supernova Neutrino Background with JUNO, J. Cos. Astro. Phys. 10 (2022) 033.

A. Abusleme et al., Radioactivity control strategy for the JUNO detector, J. High En. Phys. 11 (2021) 102.

A. Abusleme et al., JUNO sensitivity to low energy atmospheric neutrino spectra, Eur. Phys. J. C 81 (2021) 887.

A. Abusleme et al., The Design and Sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS, Eur. Phys. J. C 81 (2021) 973.

A. Abusleme et al., Calibration strategy of the JUNO experiment, J. High En. Phys. 3 (2021) 4.

H. Rebber, L. Ludhova, B. Wonsak, and Y. Xu, Particle Identification at MeV Energies in JUNO, J. Instr. 16 (2021) 01016.

A. Abusleme et al., Feasibility and physics potential of detecting 8B solar neutrinos at JUNO, Chin. Phys. C 45 (2021) 1.

A. Abusleme et al., Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector, Nucl. Instr. Meth. A, 988 (2020) 164823.

P. Kampmann, Y. Cheng, and L. Ludhova, A semi-analytical energy response model for low-energy events in JUNO, J. Instr. 15 (2020) 10007.

A. Abusleme et al., TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution, arXiv:2005.08745 (2020), shortly will be submitted to J. High En. Phys.

M.G. Aarsten et al., Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU, Phys. Rev. D 101 (2020) 032006.

Y. Cheng et al., The high-speed after-pulse measurement system for PMT, J. Instr. 13 (2018) 05014.

C. Genster, M. Schever, L. Ludhova et al., Muon reconstruction with a geometrical model in JUNO, J. Instr. 13 (2018) T03003.

F. An et al., Neutrino physics with JUNO, J. Phys. G: Nucl. Part. Phys. 43 (2016) 030401.

R. Han et al., Potential of geo-neutrino measurements at JUNO, Chin. Phys. C 40, 3 (2016) 033003.