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3 Code Status

I This presentation is extracted from the following two papers,
both of which have been submitted for publication to
PRST-AB.

I arXiv:1503.08468v1 [physics.acc-ph] 29 Mar 2015 ,
ETEAPOT: symplectic orbit/spin tracking code for all-electric
storage rings, Richard Talman and John Talman

I arXiv:1503.08494v1 [physics.acc-ph] 29 Mar 2015, EDM
planning using ETEAPOT with a resurrected AGS Electron
Analogue ring , Richard Talman and John Talman
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Figure: The bold curve shows a particle orbit passing through a
spherical, m = 1, electrostatic bending element. The shaded surfaces are
spherical electrodes. The “Q” shown at the origin is the “effective point
charge” that would give the same electric field as the electrodes.



6 Relativistic kinematics in electric potential V (r)

I Radial electric field with index m power law dependence on radius r ;

E = −E0
r1+m
0

r1+m
r̂, (1)

I The Lorentz force equation in the m=1 spherical case is

dp

dt
= −k r̂

r2
, (2)

I Both the total energy E = γmc2 + V (r) and angular momentum
L = r × p are conserved in m = 1 bend elements.

I The orbit equation for radial coordinate r(θ) is

r(θ) =
λ

1 + ε cosκ(θ − θ0)
; (3)

I This differs from the Newton/Kepler ellipse formula only because the
relativistic effect is to make κ (the “tune” in accelerator jargon)
deviate from 1. Eccentricity ε is close to zero.

I The orbit is not closed; rather, the “perihelion advances”.



7 “Integrable”’ Betatron Motion

I Muñoz and Pavic (relativistic astrophysicists) show that the
“generalized”-Hamilton vector

h = hr r̂ + hθ θ̂, (4)

is ideal for describing 2D relativistic Kepler orbits.

I (Roughly speaking) hr and hθ are betatron coordinates x and
x ′.

I But hr and hθ evolve sinusoidally for all betatron amplitudes.

I In spite of being nonlinear, the motion is “integrable”.

I This is what permits ETEAPOT tracking to be exact, and
exactly symplectic (with no artificial symplectification).

I With conventional accelerator formulation (with thick
multipole elements allowed) this is impossible.



8 Lumped correction for field index deviation

I Normally m 6= 1. This is handled by inserting zero thickness
“effective quadrupoles” of appropriate strength.

I The transfer matrices for the thin effective quadrupole for
electric bend angle ∆θ at bend radius r0 are

K
(m)
x (∆θ) =

(
1 0

(m − 1)∆θ/r0 1

)
,

K
(m)
y (∆θ) =

(
1 0

(−m + 1)∆θ/r0 1

)
. (5)

I This approximation becomes arbitrarily accurate with
sufficiently fine element slicing.



9 “Exact” solution of the BMT equation

Figure: (a) In the bend plane the spin vector s has precessed through angle α̃ away from its
nominal direction along the proton’s velocity. (b) Projection of figure (a) onto the
laboratory horizontal plane. x is the deviation of the (bold face) particle orbit from the (pale
face) design orbit. θ is the reference particle deviation angle from longitudinal and ϑ is the
tracked particle deviation angle from longitudinal. Betatron oscillations cause them to differ
on a turn by turn basis, and also cause the instantaneous bend plane to wobble away from
horizontal.
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I Bend plane axes are x̂, ŷ, ẑ.

I Spin component s⊥ = s̃y ŷ normal to bend plane is conserved.

I Spin vector parallel to the bend plane is

s̃ = −s̃‖ sin α̃ x̂ + s̃y ŷ + s̃‖ cos α̃ ẑ. (6)

s̃‖ is the (conserved) magnitude of the in-plane projection of
s̃, and α̃ is the angle between the projection of s̃ onto the
plane and the tangent vector to the orbit.

I Jackson gives the rate of change of the longitudinal spin
component in an electric field E as

d

dt
(β̂ · s) = − e

mpc
(s⊥ · E)

(
gβ

2
− 1

β

)
. (7)
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Substituting from Eq. (6) the BMT equation becomes

d

dt
(s̃‖ cos α̃) = − e

mpc
(s̃‖ sin α̃E )

(
gβ

2
− 1

β

)
, (8)

where s̃‖ is constant. Then Eq. (8) reduces to

dα̃

dt
=

eE

mpc

(
gβ

2
− 1

β

)
. (9)

Because the curvature is 1/r = eE/(vp), the advance of particle
angle ϑ is governed by the equation

dϑ

dt
=

d

dt

(
s

r

)
=

eE

p
. (10)
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I Combine Eqs. (9) and (10)

I Angles θ and ϑ, though not quite identical, differ only in
higher order. Furthermore they advance at exactly the same
rate on the average.

I Setting θ = ϑ,

dα̃

dθ
=

(
g

2
− 1

)
γ − g/2

γ
. (11)

I Even allowing for the θ dependence of γ(θ) (which is small)
this equation can be integrated in closed form.

I Fringe field precession is handled similarly, assuming the fringe
field bend plane is identical to the bend element bend plane
(which is very nearly, but not exactly true).



13 The AGS Electron Analogue Ring
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Figure: Ernest Courant 1954 machine studies tune plane resonance plot.
Short lines indicate no beam integer resonance. Dots indicate perturbed
beam half-integer resonance. The axes are quad-family strengths.
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Figure: Reconstruction of Ernest Courant 1954 machine studies tune
plane resonance plot using TEAPOT. Boxes indicate integer tune, crosses
indicate half-integer tune. The axes are quad-family strengths.
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Figure: βx and βy lattice function plots for the AGS-Analogue Ring,
modeled as all-electric (m = ±1) or all-magnetic. Because of the strong
focusing, (Qx ,Qy ) = (6.5, 6.5), there is little difference between electric
and magnetic—comparable to the change in electric field index from
m = −1 to m = 1.

I This will not be true for proton EDM lattices where the tunes
will be much smaller; e.g. (Qx ,Qy ) = (2.5, 0.2), where
quadrupole and electric bend focusing strengths are
comparable.
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Figure: Spin and longitudinal phase space evolution during one
synchrotron oscillation period of the AGS Analogue all-electric ring.
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Figure: 32 million turn (50 s real time) spin tracking in Möbius-converted
(to produce long spin coherence time (SCT)) proton EDM lattice. The
upper graphs show brief intervals near the beginning and end of the run.
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