Tracking results of all-electric ring with Runge-Kutta integration

Center for Axion and Precision Physics Korea Institute for Basic Science

Selcuk Haciomeroglu

IPAC 2015 5 May

Center for Axion and Precision Physics Research

Beam and spin tracking – Ring elements (Dipole)

Beam and spin tracking – Diff. Equations

$$\frac{d\vec{\beta}}{dt} = \frac{e}{\gamma m} \left[\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} - \vec{\beta} \frac{(\vec{\beta} \cdot \vec{E})}{c} \right]$$

$$\frac{d\vec{s}}{dt} = \frac{e}{m}\vec{s} \times \left[\left(\frac{g}{2} - \frac{\gamma - 1}{\gamma} \right) \vec{B} - \left(\frac{g}{2} - 1 \right) \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \left(\frac{g}{2} - \frac{\gamma}{\gamma + 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

- Velocity and spin equations are solved with stepwise integrators:
 - Runge-Kutta
 - Predictor-Corrector
 - Bulirsch-Stoer
 - etc.
- E and B-fields are determined using position of the particle
- Ring elements like dipoles, quadrupoles, sextupoles, RF cavities etc. are defined by their electromagnetic and geometrical properties.

Beam and spin tracking – Ring elements (Straight section)

Hard edge approximation

- the particle has
 - some potential energy in bending section
 - no potential energy in straight section
- the total energy is conserved
- the longitudinal velocity changes at the edges
- moves with constant velocity in straight section

Fringe fields

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 17, 074002 (2014)

Fringe electric fields of flat and cylindrical deflectors in electrostatic charged particle storage rings

E. M. Metodiev,^{1,2,3,4} K. L. Huang,^{1,2} Y. K. Semertzidis,^{1,3,4} and W. M. Morse¹

Pros and cons

- Requires almost no estimation besides the definitions of ring geometry and the position and size of ring elements
- Tunes, twiss parameters, acceptance etc. are estimated after simulation
- Slow for long term tracking (1ms: 2 hours with 1ps step size for RK)
- Good for
 - Studying systematic errors like offsets in ring elements, geometric phase etc.
 - Benchmarking independent studies
 - Estimating spin coherence time

Benchmarking

- Benchmarking in electric and magnetic rings
 - Y. Orlov recently estimated average radial position and kinetic energy for electric and magnetic rings with RF cavity
 - RF cavity averages the revolution period of the particle to the ideal one
 - It averages out the energy too, in a electric ring with weak focusing (in magnetic ring, it does not average out)
 - γ averages to some constant term proportional to vertical pitch when no vertical focusing
- The tracking results show agreement to high accuracy

Benchmarking – weak electric focusing

$$\left< \frac{\Delta \gamma}{\gamma_0} \right> = 0$$

$$\langle \frac{\Delta r}{r_0} \rangle = -\frac{1}{2} \langle \theta_y^2 \rangle$$

http://arxiv.org/abs/1504.07304

γ : Lorentz factor r : Radial offset Q_v: Vertical pitch

Benchmarking - no focusing

S. Haciomeroglu, IPAC15

Benchmarking

Several benchmarking results related to both electric and magnetic rings are submitted to NIM.

Geometric phase

 Some configurations of electric and magnetic field in perpendicular directions accumulate spin precession that mimics EDM

Geometric phase – B-field

Longitudinal and radial B-fields oscillating around the ring with a phase difference gives vertical component to the spin precession.

1 nT longitudinal and vertical B-field

# of oscillation	Analytical	Simulation
N=1	16.3 nrad/s	23.83 nrad/s
N=2	8 mrad/s	8 nrad/s
N=3	5.5 nrad/s	5.5 nrad/s

CW and CCW cancel out completely

Deflector misalignment

- Two plates in the ring are given offset: one vertical, the other horizontal by 1cm.
- The vertical spin component of CW and CCW beams cancel out to 4 $\mu\text{rad/s}.$
- Scales down to 4 nrad/s for 10 μm precision of plate positioning.

pEDM ring

- we need to achieve \approx 1000s of SCT
- restrictions:
 - Qy ≈ 0.3- 0.4 error in initial momentum Δp/p ≈ 10⁻⁴
 - reasonable acceptance
- we try different designs:
 - various field index (n) values
 - length of straight sections
 - initial offset of the partice w.r.t design orbit
 - quadrupole strengths
 - etc.
- work on systematics like misalignments
- on plates, quadrupoles, RF cavity etc.

PEDM ring

- The simulations showed so far:
 - Effect of the straight section length is negligible
 - Spin precession is dominated by momentum spread rather than positional oscillations
 - Spin precession shows strong dependence on field index
 - Alternating gradient found to have long spin precession time

Beam and spin tracking – pEDM ring - 1

Richard Talman's lattice

- E₀=3.5 MV/m
- $R_0 = 96m$
- L_{defl}=80 x 7.5m
- L_{str}=76 x 2m + 4 x 10m
- L_{quad}=15cm
- 1 RF cavity
- field index n=1
- even numbered straight sections include focusing quadrupole (K=50kV/m²)
- odd numbered straight sections include defocusing quadrupole (K=-100 kV/m²)

- Reasonable admittance for AGS of BNL
- Very long spin precession time (about 10⁴ s)
- Below transition

S. Haciomeroglu, IPAC15

Conclusion/Future plan

- Runge-Kutta tracking is efficient for
 - spin tracking
 - studying systematic effects
 - benchmarking independent studies.
- Slow for long term tracking. Practically we simulate a few ms.
- Simulation results show that CW-CCW design is useful in eliminating geometric phase effect
- We have a working lattice (Talman's lattice). Slip factor and long SCT needs to be together.
- Soohyung Lee from IBS/Korea is working on parallelization
- Martin Gaisser from IBS/Korea is working on fast algorithms