# Multiparticle tracking results 

Denis Zyuzin<br>Institute for Nuclear Physics<br>Forschungszentrum Juelich

September 25, 2013

## EDM search methods in storage rings

There are several methods to search EDM in storage rings.

Here we consider the "magic" method with initial spin orientation along the momentum.

## "Magic" method in purely electrostatic ring

In purely electrostatic ring spin of "magic" particle rotates with the same angular frequency as the momentum and the vertical spin component $S_{y}$ grows up due to the EDM.

## T-BMT equation

Spin dynamics described by T-BMT equation:

$$
\frac{d \vec{S}}{d t}=\vec{\Omega} \times \vec{S}
$$

or

$$
\begin{aligned}
\frac{d S_{x}}{d t} & =\Omega_{y} S_{z}-\Omega_{z} S_{y} \\
\frac{d S_{y}}{d t} & =\Omega_{z} S_{x}-\Omega_{x} S_{z} \\
\frac{d S_{z}}{d t} & =\Omega_{x} S_{y}-\Omega_{y} S_{x}
\end{aligned}
$$

## Vertical spin component

Let's have a look to $S_{y}$ component:

$$
\frac{d S_{y}}{d t}=\Omega_{z} S_{x}-\Omega_{x} S_{z}
$$

In purely electrostatic ring we have $\vec{B}=0$ and $\vec{E}=\left\{E_{x}, 0,0\right\}$ (if we do not have fringe fields). Then

$$
\begin{aligned}
& \Omega_{x}=-\frac{e}{m} \frac{\eta}{2} E_{x}, \text { where } \eta-\text { EDM factor } \\
& \Omega_{z}=\frac{e}{m}\left\{\left(\frac{1}{\gamma^{2}-1}-G\right) E_{x} \beta_{y}\right\}, \text { where } \beta_{y} \text { is vertical velocity } \\
& \qquad d=\frac{\eta e}{4 m c}
\end{aligned}
$$

$\Omega_{z}$ is zero in average (because of vertical betatron oscillations).

## Vertical spin component

Let's have a look to $S_{y}$ component:

$$
\frac{d S_{y}}{d t}=\Omega_{z} S_{x}-\Omega_{x} S_{z}
$$

In purely electrostatic ring we have $\vec{B}=0$ and $\vec{E}=\left\{E_{x}, 0,0\right\}$ (if we do not have fringe fields). Then

$$
\begin{aligned}
& \Omega_{x}=-\frac{e}{m} \frac{\eta}{2} E_{x}, \text { where } \eta-\text { EDM factor } \\
& \Omega_{z}=\frac{e}{m}\left\{\left(\frac{1}{\gamma^{2}-1}-G\right) E_{x} \beta_{y}\right\}, \text { where } \beta_{y} \text { is vertical velocity } \\
& \qquad d=\frac{\eta e}{4 m c}
\end{aligned}
$$

$\Omega_{z}$ is zero in average (because of vertical betatron oscillations).

## Vertical spin component

Now vertical spin component equation looks like

$$
\frac{d S_{y}}{d t}=-\Omega_{x} S_{z}
$$

and

$$
\Omega_{x}=-\frac{e}{m} \frac{\eta}{2} E_{x} .
$$

So, if we have horizontally polarized beam with $S_{z} \sim 1$ (or at least $S_{z}>0$ ), we will observe $S_{y}$ component due to the EDM signal.

## Vertical spin component

Now vertical spin component equation looks like

$$
\frac{d S_{y}}{d t}=-\Omega_{x} S_{z}
$$

and

$$
\Omega_{x}=-\frac{e}{m} \frac{\eta}{2} E_{x} .
$$

So, if we have horizontally polarized beam with $S_{z} \sim 1$ (or at least $S_{z}>0$ ), we will observe $S_{y}$ component due to the EDM signal.

## Vertical spin component

Unfortunately vertical spin component grows very slow and if we assume $\eta=10^{-15}$, machine precision is not enough to accumulate $S_{y}$ component. In COSY Infinity we can simulate $S_{y}$ growth with $\eta>10^{-11}$.

## Vertical spin component

Vertical spin component:

$$
\frac{d S_{y}}{d t}=-\Omega_{x} S_{z}
$$

We will observe $S_{y}$ component growth while $S_{z}>0$.
As soon as we lose horizontal polarization ( $S_{z}<0$ for part of the beam and $S_{z}>0$ for the rest of the beam), accumulated $S_{y}$ will decrease.

## Vertical spin component

Vertical spin component:

$$
\frac{d S_{y}}{d t}=-\Omega_{x} S_{z}
$$

We will observe $S_{y}$ component growth while $S_{z}>0$.
As soon as we lose horizontal polarization ( $S_{z}<0$ for part of the beam and $S_{z}>0$ for the rest of the beam), accumulated $S_{y}$ will decrease. Therefore, we need to have horizontally polarized beam long time enough to accumulate $S_{y}$ that can be measured. In depolarized beam $S_{y}$ component doesn't grow.

## Vertical spin component

Vertical spin component:

$$
\frac{d S_{y}}{d t}=-\Omega_{x} S_{z}
$$

We will observe $S_{y}$ component growth while $S_{z}>0$.
As soon as we lose horizontal polarization ( $S_{z}<0$ for part of the beam and $S_{z}>0$ for the rest of the beam), accumulated $S_{y}$ will decrease.
Therefore, we need to have horizontally polarized beam long time enough to accumulate $S_{y}$ that can be measured. In depolarized beam $S_{y}$ component doesn't grow.
We define Spin Coherence Time (SCT) as time when RMS spin
orientation in the bunch reaches one radian.
To be able to measure accumulated $S_{y}$ component, we need SCT more than 1000 seconds.

## Vertical spin component

Vertical spin component:

$$
\frac{d S_{y}}{d t}=-\Omega_{x} S_{z}
$$

We will observe $S_{y}$ component growth while $S_{z}>0$.
As soon as we lose horizontal polarization ( $S_{z}<0$ for part of the beam and $S_{z}>0$ for the rest of the beam), accumulated $S_{y}$ will decrease.
Therefore, we need to have horizontally polarized beam long time enough to accumulate $S_{y}$ that can be measured. In depolarized beam $S_{y}$ component doesn't grow.
We define Spin Coherence Time (SCT) as time when RMS spin orientation in the bunch reaches one radian.
To be able to measure accumulated $S_{y}$ component, we need SCT more than 1000 seconds.

## "Magic" energy

Why horizontal polarization disappears?
Now let's have a look to the horizontal spin component equation:

$$
\frac{d S_{x}}{d t}=\Omega_{y} S_{z}-\Omega_{z} S_{y}
$$

To preserve horizontal polarization we need $\frac{d S_{x}}{d t}=0$.

## "Magic" energy

Why horizontal polarization disappears?
Now let's have a look to the horizontal spin component equation:

$$
\frac{d S_{x}}{d t}=\Omega_{y} S_{z}-\Omega_{z} S_{y}
$$

To preserve horizontal polarization we need $\frac{d S_{x}}{d t}=0$.

## $S_{y}$ is neglectable, but what is $\Omega_{y}$ ?

Why horizontal polarization disappears?
Now let's have a look to the horizontal spin component equation:

$$
\frac{d S_{x}}{d t}=\Omega_{y} S_{z}-\Omega_{z} S_{y}
$$

To preserve horizontal polarization we need $\frac{d S_{x}}{d t}=0$.
$S_{y}$ is neglectable, but what is $\Omega_{y}$ ?

## "Magic" energy

Horizontal spin component equation:

$$
\frac{d S_{x}}{d t}=\Omega_{y} S_{z}
$$

where

$$
\Omega_{y}=-\frac{e}{m}\left(\frac{1}{\gamma^{2}-1}-G\right) \beta_{z} E_{x}
$$

If we will make $\Omega_{y}=0$, we will get infinite SCT.
The problem is that we can not make $\Omega_{y}=0$ for each particle in the bunch.
Each particle has its own $\Omega_{y}$, all spins rotate on different angles and polarization disappears after somewhile.

## "Magic" energy

Horizontal spin component equation:

$$
\frac{d S_{x}}{d t}=\Omega_{y} S_{z}
$$

where

$$
\Omega_{y}=-\frac{e}{m}\left(\frac{1}{\gamma^{2}-1}-G\right) \beta_{z} E_{x} .
$$

If we will make $\Omega_{y}=0$, we will get infinite SCT.
The problem is that we can not make $\Omega_{y}=0$ for each particle in the bunch.
Each particle has its own $\Omega_{y}$, all spins rotate on different angles and polarization disappears after somewhile.

## Spin decoherence

$$
\Omega_{y}=-\frac{e}{m}\left(\frac{1}{\gamma^{2}-1}-G\right) \beta_{z} E_{x}
$$

There is only one reason for $\Omega_{y} \neq 0: \gamma \neq \gamma_{\text {magic }}$.

## Spin decoherence

$$
\Omega_{y}=-\frac{e}{m}\left(\frac{1}{\gamma^{2}-1}-G\right) \beta_{z} E_{x}
$$

There is only one reason for $\Omega_{y} \neq 0: \gamma \neq \gamma_{\text {magic }}$.
There are many reasons why $\gamma \neq \gamma_{\text {magic }}$ :

- $\frac{\Delta p}{p} \neq 0$.
- Initial offsets $x, y$ (energy change depends on orbit lengthening due to initial distribution).
- Fringe fields influence (even reference particle changes its energy entering the deflector and leaving it).


## Spin decoherence

$$
\Omega_{y}=-\frac{e}{m}\left(\frac{1}{\gamma^{2}-1}-G\right) \beta_{z} E_{x}
$$

There is only one reason for $\Omega_{y} \neq 0: \gamma \neq \gamma_{\text {magic }}$.
There are many reasons why $\gamma \neq \gamma_{\text {magic }}$ :

- $\frac{\Delta p}{p} \neq 0$.
- Initial offsets $x, y$ (energy change depends on orbit lengthening due to initial distribution).
- Fringe fields influence (even reference particle changes its energy entering the deflector and leaving it).


## Initial distribution

Calculations were made on JUROPA cluster. Initial distribution:

- 39763 particles
- $\bar{x}=0 \mathrm{~mm}, \sigma(x)=3 \mathrm{~mm}$
- $\bar{y}=0 \mathrm{~mm}, \sigma(y)=3 \mathrm{~mm}$
- $\frac{\overline{\Delta K}}{K}=0, \sigma\left(\frac{\Delta K}{K}\right)=10^{-3}$
- $\overline{S_{x}}=0, \sigma\left(S_{x}\right)=10^{-3}$
- $\overline{S_{y}}=0, \sigma\left(S_{y}\right)=10^{-3}$
- $\overline{S_{z}}=1, \sigma\left(S_{z}\right)=10^{-6}$


## Spins in 3D



## Vertical spin component projection

Turn 0


## Thanks

Thank you for your attention.

