Long Spin Coherence Times and How To Find Them

Aleksandra Wrońska for JEDI Collaboration Jagiellonian University in Kraków

744. WE-Heraeus-Seminar, 29-31 March 2021 Towards Storage Ring Electric Dipole Moment Measurements

EDM in storage rings

srEDM - prerequisites

- p/d beam circulating in a storage ring
- horizontal polarization
- stable conditions (including beam polarization) to make the measurement feasible
- Long Spin Coherence Times (SCT)

Spin decoherence

- Horizontal precession with $v_s = \gamma G$
- Spread of v_s leads to depolarization

Experimental SCT studies at COSY

t = 0

• Tune and chromaticity measurements

Studied effects

- Sextupole settings
- Electron cooling

Typical COSY beam setup

Distribution of particles along the ring as a function of time in the cycle

Effect of sextupoles

- SCT limited by spread of v_s . For a bunched beam, it is related to different orbit lengths for different betatron oscillation amplitudes, $v_s \sim A^2$
- Fractional change of the orbit length depends on chromaticity: $\Delta C/C_0 \sim \zeta_{\rm nat}$
- Additional sextupole fields change the orbit location and length
- Cancellation of depolarization possible!

G. Guidoboni et al., PRL 117 (2016)

G. Guidoboni et al., PR AB 21 (2018)

35 mxg mxs mxl 30 25 β (m), D (m) 20 D 15 10 5 50 60 70 80 90 40 s (m) $\frac{1}{\tau_{SCT}} = |\underline{A} + a_1S + a_2L + \underline{a_3G}|\theta_X^2 + |B + b_1S + b_2L + b_3G|\theta_Y^2$ $+|C + c_1S + c_2L + c_3G|\sigma_P^2$ natural drivers: value emittance, sync. osc. sensitivities sextupole currents

(MXS, MXL, MXG)

Chromaticity survey

- 2014
- $\zeta_{x, y} = f(I_L, I_S, I_G)$ a hyperplane, with a weak dependence on I_L
- Parametrization via a set of 1d scans (other currents held at zero)

Chromaticity survey

- 2d representation of chromaticity functions at MXL=-0.145 m⁻³.
- Relative position and distance of the $\zeta_{x,y}$ =0 lines depends (weakly) on MXL.

FIG. 6. Values of the x (green) and y (blue) chromaticities as a function of the fields in the S and G sextupole magnet families. The planes are fits to a set of individual chromaticity measurements. The place where each plane crosses zero chromaticity is indicated by a dashed line.

2014

Survey of sextupole space

• Two beam settings:

- wide beam (cooling while bunching, then horizontal heating to expand betatron motion)
- long beam (electron-cooled, then bunched to have a longer bunch)
- Polarization monitored using EDDA 2014

 Table 1: List of analyzed sextupole scans.

Set	beam	MXS	MXG	MXL
SET01	wide	0	variable	-1.45%
SET02	wide	variable	0	-1.45%
SET03	wide	10%	variable	-1.45%
SET04	wide	20%	variable	-1.45%
SET05	long	0	variable	-1.45%
SET06	long	variable	0	-1.45%
SET07	long	10%	variable	-1.45%

SCT - definition

Whole variety of polarization histories in cycles, possible description:

- Linear (-*b/a*, down to 0)
- Bi-linear(?)
- Exponential (τ,1/e)
- Gaussian (σ, 0.606)
- Any other function (?)

Survey of sextupole space

- Results for wide and long beam settings are consistent with each other
- The maximum SCT points form a ridge in the MXG-MXS space close/between the $\zeta_{x,y} = 0$ lines.

Sextupoles - lesson learned

Strategy to search for long-SCT working point (applied ever since):

- Make 2 SCT scans across the expected ridge (A1, A2) to determine its location
- Make an SCT scan along the ridge to find the maximum (B)
- Routinely find SCT~1000 s working points

Keep in mind:

- MXL tuning may be necessary
- $1/\tau \sim I_i$, thus SCT very sensitive to sextupole currents
- Other machine issues may be limiting

Cooling scheme

- Can we do even better than 1000 s exploiting cooling differently?
- Explore electron cooling scheme: pre-cooled beam (standard) versus continuosly cooled beam
- Set up longer cycles to observe polarization longer (EDDA)
- Switch on the extraction only for short periods to save the beam

Cooling scheme results

- SCT extracted using model calculation based on initial spin tune distribution (E. Stephenson)
- Model delivered template curves which were fitted to the experimental data
- SCT = time after which polarization drops to 0.606 of initial value

A. Wrońska, WE-Heraeus Seminar, March 2021

Cooling scheme lesson learned

- Continuous cooling throughout the whole cycle leads to even longer SCTs (>2000 s)
- Electron cooling is incompatible with the EDM search scheme though
- Is stochastic cooling an option?

		~		
Run number	E-cooling type	Cycle length (s)	IPP lifetime (s)	Total error
5018	Fully cooled	564	1721	1044
5019	Fully cooled	564	1263	325
5021	Pre-cooled	564	436	68
5023	Fully cooled	1562	2108	714
5039	Fully cooled	1564	2234	523
5126	Pre-cooled	1564	825	108
5127	Fully cooled	1564	987	180

S. Karanth et al., NIM A 987 (2021)

More recent experience X-chramaticity, MXG = 18% prelinx Intensity ~ 1.e9 Intensity ~ 1.2e10 ٠ ٠ 35 MXL8 -15 15 Y - chromaticity, MXG = 18% 10 ٠ ≽ Intensity ~ 1.e9 Intensity ~ 1.2e10 -10 MXL8 -15 35

- New tool for fast chromaticity measurement available since 2020 (B. Breitkreutz, P. Niedemayer)
- First important results: chromaticity depends on beam intensity (Sep'2020 beam time)
- Usually, ζ measurement at the end of cycle, at lower beam intensity relevant for SCT?

Version v2.2.1 | Philipp | Tue Sep 1 10:16:18 2020 +0200

SCT in Sep'2020

- Two beam setups, though appeared identical
- JEPO polarimeter
- Lines (solid, dashed) show $\zeta_{x,y}=0$
- Magenta dots SCT measurements
- Colours inter/extrapolation
- Maximum SCT ridge is not quite between the lines, as would be expected...

A. Wrońska, WE-Heraeus Seminar, March 2021

SCT over the last beam times

- Quite different landscapes
- Different max SCTs (180-2500 s)
- Sep'2020 beam time did not require long SCT, but the scans did not go beyond 180 s

V. Shmakova, CM Dec 2020

A. Wrońska, WE-Heraeus Seminar, March 2021

Towards SCT of proton beams

Protons are more difficult in SCT optimization than deuterons:

- $|G_p/G_d| \sim 15$
- intrinsic resonances for protons, ~10x more and ~10x stronger than for deuterons
- First simulation results obtained
- More simulations and experimental efforts to come...

A. Wrońska, WE-Heraeus Seminar, March 2021

Proton SCT - outlook

Investigation of SCT in a prototype ring (frozen spin) via BMad simulations

- T_p = 45 MeV
- Obtained SCT of ~5 s only
- Spin tune spread minimal at ζ_y =-5.33
- SCT maximal at ζ_y =-3.88.
- Open question:
 - WHY don't they coincide??

M. Vitz, M.Sc. thesis 2020

Deuterons:

- Extensive experimental effort
- Long SCTs are connected with zero-chromaticity, can be optimized using sextupole families at COSY
- Use of continuous cooling allows to extend SCT even more
- At COSY well established procedures allow to find working points with SCT~1000 s (almost) routinely

Protons:

- Simulations for COSY indicate difficulties resulting from the presence of multiple intrinsic resonances
- First simulations for a prototype ring yield unresolved, puzzling results

Contributors: Ed Stephenson, Swathi Karanth, Greta Guidoboni, Vera Shmakova, Max Vitz, Andreas Lehrach, JEDI Collaboration