COSY INFINITY

Martin Berz, Kyoko Makino, Robert Hipple, Eremey Valetov

Department of Physics and Astronomy Michigan State University

- Symplecticity governs all Hamiltonian systems
- Symplecticity is rather hard to enforce; thus:
- Either try hard to track the **right** system, end up being non-symplectic
- Or track the **wrong** system with symplectic models

- Symplecticity governs all Hamiltonian systems
- Symplecticity is rather hard to enforce; thus:
- Either try hard to track the **right** system, end up being non-symplectic
- Or track the **wrong** system with symplectic models

Right System, Non-Symplectic

- Best possible fields, potentials
- Exact Hamiltonian
- Good integrators
- Examples: numerical integrators, Map codes

- Symplecticity governs all Hamiltonian systems
- Symplecticity is rather hard to enforce; thus:
- Either try hard to track the **right** system, end up being non-symplectic
- Or track the **wrong** system with symplectic models

Right System, Non-Symplectic

- Best possible fields, potentials
- Exact Hamiltonian
- Good integrators
- Examples: numerical integrators, Map codes

Wrong System, Symplectic

- Approximate Hamiltonian
- Approximate Fields
- Symplectic Integrators
- Examples: Kick codes

- Symplecticity governs all Hamiltonian systems
- Symplecticity is rather hard to enforce; thus:
- Either try hard to track the **right** system, end up being non-symplectic
- Or track the **wrong** system with symplectic models

Right System, Non-Symplectic

- Best possible fields, potentials
- Exact Hamiltonian
- Good integrators
- Examples: numerical integrators, Map codes

Wrong System, Symplectic

- Approximate Hamiltonian
- Approximate Fields
- Symplectic Integrators
- Examples: Kick codes

Goal: Search wrong system nearest to right system

- Start with best possible **right** system
- High-order transfer map using "best" fields
- This makes it **wrong** finite order, numerical error
- Symplectify using "nearest" via Hofer's metric

Transfer Map Method and Differential Algebras

• The transfer map \mathcal{M} is the flow of the system ODE.

$$\vec{z}_f = \mathcal{M}(\vec{z}_i, \vec{\delta}),$$

where \vec{z}_i and \vec{z}_f are the initial and the final condition, $\vec{\delta}$ is system parameters.

- For a repetitive system, only one cell transfer map has to be computed. Thus, it is much faster than ray tracing codes (i.e. tracing each individual particle through the system).
- The Differential Algebraic method allows a very efficient computation of high order Taylor transfer maps.
- The Normal Form method can be used for analysis of nonlinear behavior.

Differential Algebras (DA)

- it works to arbitrary order, and can keep system parameters in maps.
- very transparent algorithms; effort independent of computation order.

The code **COSY Infinity** has many tools and algorithms necessary.

NUMBER FIELDS AND FLOATING POINT NUMBERS

considered relevant

NUMBER FIELD INCLUSIONS (INTERVALS)

FUNCTION ALGEBRAS

considered relevant

Analytic formula or local expansion of the field should be specified

Quadrupole example: $\vec{B}(x, y, s) = (k_q y, k_q x, 0)$

COSY INFINITY

- Arbitrary order (in practice orders 7 to 11 are reasonable)
- Maps depending on parameters
- No approximations in motion or field description
- Large library of elements, magnetic or electric
- Arbitrary Elements (you specify fields)
- Very flexible input language
- Powerful interactive graphics
- Errors: position, tilt, rotation
- Symplectic tracking through maps
- Normal form methods
- Spin dynamics
- Fast fringe field models using SYSCA approach
- Reference manual (80 pages) and Programming manual (90 pages)

Elements in COSY

- Magnetic and electric multipoles
- Superimposed multipoles
- Combined function bending magnets with curved edges
- Electrostatic deflectors
- Wien filters
- Wigglers
- Solenoids, various field configurations
- 3 tube electrostatic round lens, various configurations
- Exact fringe fields to all of the above
- Fast fringe fields (SYSCA)
- General electromagnetic element (measured data)
- Glass lenses, mirrors, prisms with arbitrary surfaces
- Misalignments: position, angle, rotation

All can be computed to arbitrary order, and the dependence on any of their parameters can be computed.

The Operator ∂^{-1} on Taylor Models

Let (P_n, I_n) be an *n*-th order Taylor model of f. From this we can obtain a Taylor model for the indefinite integral $\partial_i^{-1} f = \int f \, dx'_i$ with respect to variable x_i .

Taylor polynomial part: $\int_0^{x_i} P_{n-1} dx'_i$,

Remainder Bound: $(B(P_n - P_{n-1}) + I_n) \cdot B(x_i)$, where B(P) is a polynomial bound.

So define the operator ∂_i^{-1} on space of Taylor models as

$$\partial_i^{-1}(P_n, I_n) = \left(\int_0^{x_i} P_{n-1} dx'_i , (B(P_n - P_{n-1}) + I_n) \cdot B(x_i) \right)$$

Taylor Models for the Flow

Goal: Determine a Taylor model, consisting of a Taylor Polynomial and an interval bound for the remainder, for the flow of the differential equation

$$\frac{d}{dt}\vec{r}(t) = \vec{F}(\vec{r}(t), t)$$

where \vec{F} is sufficiently differentiable. The Remainder Bound should be fully rigorous for all initial conditions \vec{r}_0 and times t that satisfy

$$\vec{r}_0 \in [\vec{r}_{01}, \vec{r}_{02}] = \vec{B}$$

 $t \in [t_0, t_1].$

In particular, \vec{r}_0 itself may be a Taylor model, as long as its range is known to lie in \vec{B} .

The Use of Schauder's Theorem

Re-write differential equation as integral equation

$$\vec{r}(t) = \vec{r}_0 + \int_{t_0}^t \vec{F}(\vec{r}(t'), t') dt'.$$

Now introduce the operator

$$A: \vec{C}^0[t_0, t_1] \to \vec{C}^0[t_0, t_1]$$

on space of continuous functions via

$$A\left(\vec{f}\right)(t) = \vec{r}_0 + \int_{t_0}^t \vec{F}\left(\vec{f}(t'), t'\right) dt'.$$

Then the solution of ODE is transformed to a fixed-point problem on space of continuous functions

$$\vec{r} = A(\vec{r}).$$

Theorem (Schauder): Let A be a continuous operator on the Banach Space X. Let $M \subset X$ be compact and convex, and let $A(M) \subset M$. Then A has a fixed point in M, i.e. there is an $\vec{r} \in M$ such that $A(\vec{r}) = \vec{r}$.

The Polynomial of the Self-Including Set

Attempt sets M^* of the form

$$M^* = M_{\vec{P}^* + \vec{I}^*} \text{ where}$$
$$\vec{P}^* = \mathcal{M}_n(\vec{r}_0, t),$$

the *n*-th order Taylor expansion of the flow of the ODE. It is to be expected that $\vec{I^*}$ can be chosen smaller and smaller as order *n* of $\vec{P^*}$ increases.

This requires knowledge of *n*th order flow $\mathcal{M}_n(\vec{r}_0, t)$, including time dependence. It can be obtained by iterating in polynomial arithmetic, or Taylor models without treatment of a remainder. To this end, one chooses an initial function $\mathcal{M}_n^{(0)}(\vec{r}, t) = \mathcal{I}$, where \mathcal{I} is the identity function, and then iteratively determines

$$\mathcal{M}_n^{(k+1)} =_n A(\mathcal{M}_n^{(k)}).$$

This process converges to the exact result \mathcal{M}_n in exactly *n* steps.

SET INCLUSIONS (INTERVALS)

considered relevant

T: Extracts information considered relevant

The Remainder of the Self-Including Set

Now try to find $\vec{I^*}$ such that

$$A(\mathcal{M}_n + \vec{I^*}) \subset \mathcal{M}_n + \vec{I^*},$$

the Schauder inclusion requirement. Suitable choice for \vec{I}^* requires experimenting, but is greatly simplified by the observation

$$\vec{I}^* \supset \vec{I}^{(0)} = A(\mathcal{M}_n(\vec{r}, t) + [\vec{0}, \vec{0}]) - \mathcal{M}_n(\vec{r}, t).$$

Evaluating the right hand side in RDA yields a lower bound for \vec{I}^* , and a benchmark for the size to be expected. Now iteratively try

$$\vec{I}^{(k)} = 2^k \cdot \vec{I}^{(0)},$$

until computational inclusion is found, i.e.

$$A(\mathcal{M}_n(\vec{r},t)+\vec{I}^{(k)}) \subset \mathcal{M}_n(\vec{r},t)+\vec{I}^{(k)}.$$