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The Crux of Symplectic Tracking

o Symplecticity governs all Hamiltonian systems

o Symplecticity Is rather hard to enforce; thus:

o Either try hard to track the right system, end up being non-symplectic
e Or track the wrong system with symplectic models
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The Crux of Symplectic Tracking

Symplecticity governs all Hamiltonian systems

Symplecticity is rather hard to enforce; thus:

Either try hard to track the right system, end up being non-symplectic
Or track the wrong system with symplectic models

Right System, Non-Symplectic Wrong System, Symplectic

e Best possible fields, potentials * Approximate Hamiltonian

« Exact Hamiltonian  Approximate Fields

e Good integrators » Symplectic Integrators

»  Examples: numerical integrators, * Examples: Kick codes
Map codes

Goal: Search wrong system nearest to right system

Start with best possible right system

High-order transfer map using “best” fields

This makes it wrong - finite order, numerical error
Symplectify using “nearest” via Hofer’s metric



Transtfer Map Method and Differential Algebras

e The transfer map M is the flow of the system ODE.
7y = M(Z,0),
where z; and Z are the initial and the final condition, § is system para-
meters.

e For a repetitive system, only one cell transfer map has to be computed.
Thus, it is much faster than ray tracing codes (i.e. tracing each individual
particle through the system).

e The Differential Algebraic method allows a very efficient computation of
high order Taylor transfer maps.

e The Normal Form method can be used for analysis of nonlinear behavior.
Differential Algebras (DA)

e it works to arbitrary order, and can keep system parameters in maps.

e very transparent algorithms; effort independent of computation order.

The code COSY Infinity has many tools and algorithms necessary.
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Differential Algebra

FUNCTION ALGEBRAS
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Beam Physics
ODE's
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Analytic formula or local expansion of the field should be specified



Measured Field Data
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COSY INFINITY

e Arbitrary order (in practice orders 7 to 11 are reasonable)
e Maps depending on parameters

e No approximations in motion or field description
e Large library of elements, magnetic or electric

e Arbitrary Elements (you specify fields)

e Very flexible input language

e Powerful interactive graphics

e Errors: position, tilt, rotation

e Symplectic tracking through maps

e Normal form methods

e Spin dynamics

e Fast fringe field models using SYSCA approach

e Reference manual (80 pages) and Programming manual (90 pages)



Elements in COSY

e Magnetic and electric multipoles

e Superimposed multipoles

e Combined function bending magnets with curved edges
e Electrostatic deflectors

e Wien filters

e Wigglers

e Solenoids, various field configurations

e 3 tube electrostatic round lens, various configurations
e Exact fringe fields to all of the above

e Fast fringe fields (SYSCA)

e General electromagnetic element (measured data)

e Glass lenses, mirrors, prisms with arbitrary surfaces
e Misalignments: position, angle, rotation

All can be computed to arbitrary order, and the dependence on any of
their parameters can be computed.



The Operator 0 'on Taylor Models

Let (P,, I,) be an n-th order Taylor model of f. From this we can obtain
a Taylor model for the indefinite integral 0, Lf = [ f dx} with respect to
variable x;.

Taylor polynomial part: ;" B,_1da,

Remainder Bound: (B(P,—P,-1)+1,)-B(x;), where B(P) is a polynomial
bound.

So define the operator 82-_101(1 space of Taylor models as

0, (P, 1)
([ st R Py 1) B



Taylor Models for the Flow

Goal: Determine a Taylor model, consisting of a Taylor Polynomial and
an interval bound for the remainder, for the flow of the differential equation

d

S7(t) = F(r(t), 0

where F is sufficiently differentiable. The Remainder Bound should be fully
rigorous for all initial conditions 7y and times ¢ that satisfy

—

o € |To1,To2] = B
t € [to, t1].

In particular, 7 itself may be a Taylor model, as long as its range is known
to lie in B.



The Use of Schauder’s Theorem

Re-write differential equation as integral equation

—

t
F(t) =7 + / F(r(d), ) dt.
Lo
Now introduce the operator
A COto, t1] — CPlto, t4]

on space of continuous functions via

t
A (f) (t) = 7 +/ Ia (f(t’),t’) dt'
Lo
Then the solution of ODE is transformed to a fixed-point problem on space
of continuous functions
7= A(7).

Theorem (Schauder): Let A be a continuous operator on the Banach
Space X. Let M C X be compact and convex, and let A(M) C M. Then
A has a fixed point in M, i.e. there is an ¥ € M such that A(T) = 7.



The Polynomial of the Self-Including Set

Attempt sets M* of the form

]\4>I< = Mﬁ*+f* Where

ﬁ* — Mn(f)()at))

the n-th order Taylor expansion of the flow of the ODE. It is to be expected
that 7* can be chosen smaller and smaller as order n of P* increases.

This requires knowledge of nth order flow M, (7, t), including time de-
pendence. It can be obtained by iterating in polynomial arithmetic, or
Taylor models without treatment of a remainder. To this end, one chooses
an initial function M. (7,t) = Z, where 7 is the identity function, and
then iteratively determines

This process converges to the exact result M,, in exactly n steps.
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FUNCTION ALGEBRA

INCLUSIONS
I

Space of Functions
— —

h=f+g
S
8 <
=2
<
'< h=f g
N—
h=3f

—

Differential Algebra
(also want “exp”, “sin”
etc: Banach DA)

(Inclusion in Taylor Model,
Equivalence Relation)

I
+ ®
I
I
©)
I
I
P S
I

Diagrams commute
exactly

T: Extracts information
considered relevant

Y

Taylor Models
™

hT =fTeB gT
—
hT :fTG a1
_
hr=®gr

Differential Algebra
(even Banach DA)

~

VSdl

_/



The Remainder of the Self-Including Set

Now try to find I* such that
AM, +I") c M, + I*,

the Schauder inclusion requirement. Suitable choice for I requires experi-
menting, but is greatly simplified by the observation

I 5 1 = A(M,,(7,t) + [0,0]) — M (7, t).

Evaluating the right hand side in RDA yields a lower bound for I*, and a
benchmark for the size to be expected. Now iteratively try

k) — ok . Jl0)
until computational inclusion is found, i.e.

AM, (7, t) + TWY € M, (7, ¢) + T,
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