COSY INFINITY

Martin Berz, Kyoko Makino, Robert Hipple, Eremey Valetov
Department of Physics and Astronomy
Michigan State University

The Crux of Symplectic Tracking

- Symplecticity governs all Hamiltonian systems
- Symplecticity is rather hard to enforce; thus:
- Either try hard to track the right system, end up being non-symplectic
- Or track the wrong system with symplectic models

The Crux of Symplectic Tracking

- Symplecticity governs all Hamiltonian systems
- Symplecticity is rather hard to enforce; thus:
- Either try hard to track the right system, end up being non-symplectic
- Or track the wrong system with symplectic models

Right System, Non-Symplectic

- Best possible fields, potentials
- Exact Hamiltonian
- Good integrators
- Examples: numerical integrators, Map codes

The Crux of Symplectic Tracking

- Symplecticity governs all Hamiltonian systems
- Symplecticity is rather hard to enforce; thus:
- Either try hard to track the right system, end up being non-symplectic
- Or track the wrong system with symplectic models

Right System, Non-Symplectic

- Best possible fields, potentials
- Exact Hamiltonian
- Good integrators
- Examples: numerical integrators, Map codes

Wrong System, Symplectic

- Approximate Hamiltonian
- Approximate Fields
- Symplectic Integrators
- Examples: Kick codes

The Crux of Symplectic Tracking

- Symplecticity governs all Hamiltonian systems
- Symplecticity is rather hard to enforce; thus:
- Either try hard to track the right system, end up being non-symplectic
- Or track the wrong system with symplectic models

Right System, Non-Symplectic

- Best possible fields, potentials
- Exact Hamiltonian
- Good integrators
- Examples: numerical integrators, Map codes

Wrong System, Symplectic

- Approximate Hamiltonian
- Approximate Fields
- Symplectic Integrators
- Examples: Kick codes

Goal: Search wrong system nearest to right system

- Start with best possible right system
- High-order transfer map using "best" fields
- This makes it wrong - finite order, numerical error
- Symplectify using "nearest" via Hofer's metric

Transfer Map Method and Differential Algebras

- The transfer map \mathcal{M} is the flow of the system ODE.

$$
\vec{z}_{f}=\mathcal{M}\left(\vec{z}_{i}, \vec{\delta}\right),
$$

where \vec{z}_{i} and \vec{z}_{f} are the initial and the final condition, $\vec{\delta}$ is system parameters.

- For a repetitive system, only one cell transfer map has to be computed. Thus, it is much faster than ray tracing codes (i.e. tracing each individual particle through the system).
- The Differential Algebraic method allows a very efficient computation of high order Taylor transfer maps.
- The Normal Form method can be used for analysis of nonlinear behavior.

Differential Algebras (DA)

- it works to arbitrary order, and can keep system parameters in maps.
- very transparent algorithms; effort independent of computation order.

The code COSY Infinity has many tools and algorithms necessary.

NUMBER FIELDS AND

 FloAting Point Numbers

Real Numbers

$$
\mathrm{c}=\mathrm{a}+\mathrm{b}
$$

$\mathrm{c}=\mathrm{a} \cdot \mathrm{b}$

$$
{ }^{\mathrm{c}} \mathrm{~T}^{=}=\mathrm{a}_{\mathrm{T}} \odot \mathrm{~b}_{\mathrm{T}}
$$

Field
("approximately")

Floating Point Numbers

$$
{ }^{\mathrm{c}_{\mathrm{T}}}=\mathrm{a}_{\mathrm{T}} \oplus \mathrm{~b}_{\mathrm{T}}
$$

(Also want "exp", "sin" etc: Banach Field)

Diagrams commute
"approximately"

T: Extracts information
considered relevant

Number Field Inclusions (INTERVALS)

Real Numbers

$$
c=a+b
$$

$\mathrm{c}=\mathrm{a} \cdot \mathrm{b}$

Equivalence Relation)

Diagrams commute exactly!
(Also want "exp", "sin" etc: Banach Field)

Floating Point Intervals

$$
\mathrm{c}_{\mathrm{I}}=\mathrm{a}_{\mathrm{I}} \oplus \mathrm{~b}_{\mathrm{I}}
$$

$$
\mathrm{c}_{\mathrm{I}}=\mathrm{a}_{\mathrm{I}} \odot \mathrm{~b}_{\mathrm{I}}
$$

Little Algebraic Structure

I: Extracts information
considered relevant

Function Algebras

Analytic formula or local expansion of the field should be specified

Quadrupole example: $\vec{B}(x, y, s)=\left(k_{q} y, k_{q} x, 0\right)$

COSY INFINITY

- Arbitrary order (in practice orders 7 to 11 are reasonable)
- Maps depending on parameters
- No approximations in motion or field description
- Large library of elements, magnetic or electric
- Arbitrary Elements (you specify fields)
- Very flexible input language
- Powerful interactive graphics
- Errors: position, tilt, rotation
- Symplectic tracking through maps
- Normal form methods
- Spin dynamics
- Fast fringe field models using SYSCA approach
- Reference manual (80 pages) and Programming manual (90 pages)

Elements in COSY

- Magnetic and electric multipoles
- Superimposed multipoles
- Combined function bending magnets with curved edges
- Electrostatic deflectors
- Wien filters
- Wigglers
- Solenoids, various field configurations
- 3 tube electrostatic round lens, various configurations
- Exact fringe fields to all of the above
- Fast fringe fields (SYSCA)
- General electromagnetic element (measured data)
- Glass lenses, mirrors, prisms with arbitrary surfaces
- Misalignments: position, angle, rotation

All can be computed to arbitrary order, and the dependence on any of their parameters can be computed.

The Operator ∂^{-1} on Taylor Models

Let $\left(P_{n}, I_{n}\right)$ be an n-th order Taylor model of f. From this we can obtain a Taylor model for the indefinite integral $\partial_{i}^{-1} f=\int f d x_{i}^{\prime}$ with respect to variable x_{i}.
Taylor polynomial part: $\int_{0}^{x_{i}} P_{n-1} d x_{i}^{\prime}$,
Remainder Bound: $\left(B\left(P_{n}-P_{n-1}\right)+I_{n}\right) \cdot B\left(x_{i}\right)$, where $B(P)$ is a polynomial bound.
So define the operator ∂_{i}^{-1} on space of Taylor models as

$$
\begin{aligned}
& \partial_{i}^{-1}\left(P_{n}, I_{n}\right) \\
& =\left(\int_{0}^{x_{i}} P_{n-1} d x_{i}^{\prime}, \quad\left(B\left(P_{n}-P_{n-1}\right)+I_{n}\right) \cdot B\left(x_{i}\right)\right)
\end{aligned}
$$

Taylor Models for the Flow

Goal: Determine a Taylor model, consisting of a Taylor Polynomial and an interval bound for the remainder, for the flow of the differential equation

$$
\frac{d}{d t} \vec{r}(t)=\vec{F}(\vec{r}(t), t)
$$

where \vec{F} is sufficiently differentiable. The Remainder Bound should be fully rigorous for all initial conditions \vec{r}_{0} and times t that satisfy

$$
\begin{aligned}
& \vec{r}_{0} \in\left[\vec{r}_{01}, \vec{r}_{02}\right]=\vec{B} \\
& \quad t \in\left[t_{0}, t_{1}\right] .
\end{aligned}
$$

In particular, \vec{r}_{0} itself may be a Taylor model, as long as its range is known to lie in \vec{B}.

The Use of Schauder's Theorem

Re-write differential equation as integral equation

$$
\vec{r}(t)=\vec{r}_{0}+\int_{t_{0}}^{t} \vec{F}\left(\vec{r}\left(t^{\prime}\right), t^{\prime}\right) d t^{\prime}
$$

Now introduce the operator

$$
A: \vec{C}^{0}\left[t_{0}, t_{1}\right] \rightarrow \vec{C}^{0}\left[t_{0}, t_{1}\right]
$$

on space of continuous functions via

$$
A(\vec{f})(t)=\vec{r}_{0}+\int_{t_{0}}^{t} \vec{F}\left(\vec{f}\left(t^{\prime}\right), t^{\prime}\right) d t^{\prime}
$$

Then the solution of ODE is transformed to a fixed-point problem on space of continuous functions

$$
\vec{r}=A(\vec{r})
$$

Theorem (Schauder): Let A be a continuous operator on the Banach Space X. Let $M \subset X$ be compact and convex, and let $A(M) \subset M$. Then A has a fixed point in M, i.e. there is an $\vec{r} \in M$ such that $A(\vec{r})=\vec{r}$.

The Polynomial of the Self-Including Set

Attempt sets M^{*} of the form

$$
\begin{aligned}
M^{*} & =M_{\vec{P}^{*}+\vec{I}^{*}} \text { where } \\
\vec{P}^{*} & =\mathcal{M}_{n}\left(\vec{r}_{0}, t\right),
\end{aligned}
$$

the n-th order Taylor expansion of the flow of the ODE. It is to be expected that \vec{I}^{*} can be chosen smaller and smaller as order n of \vec{P}^{*} increases.
This requires knowledge of nth order flow $\mathcal{M}_{n}\left(\vec{r}_{0}, t\right)$, including time dependence. It can be obtained by iterating in polynomial arithmetic, or Taylor models without treatment of a remainder. To this end, one chooses an initial function $\mathcal{M}_{n}^{(0)}(\vec{r}, t)=\mathcal{I}$, where \mathcal{I} is the identity function, and then iteratively determines

$$
\mathcal{M}_{n}^{(k+1)}={ }_{n} A\left(\mathcal{M}_{n}^{(k)}\right)
$$

This process converges to the exact result \mathcal{M}_{n} in exactly n steps.

SET INCLUSIONS (INTERVALS)

Real Numbers

$$
\mathrm{c}=\mathrm{a}+\mathrm{b}
$$

$\mathrm{c}=\mathrm{a} \cdot \mathrm{b}$

Diagrams commute exactly!

Floating Point Intervals

$$
\mathrm{c}_{\mathrm{I}}=\mathrm{a}_{\mathrm{I}} \oplus \mathrm{~b}_{\mathrm{I}}
$$

$$
\mathrm{c}_{\mathrm{I}}=\mathrm{a}_{\mathrm{I}} \odot \mathrm{~b}_{\mathrm{I}}
$$

Little Algebraic Structure

I: Extracts information
considered relevant

FUnction Algebra INCLUSIONS

The Remainder of the Self-Including Set

Now try to find $\overrightarrow{I^{*}}$ such that

$$
A\left(\mathcal{M}_{n}+\vec{I}^{*}\right) \subset \mathcal{M}_{n}+\vec{I}^{*}
$$

the Schauder inclusion requirement. Suitable choice for $\overrightarrow{I^{*}}$ requires experimenting, but is greatly simplified by the observation

$$
\vec{I}^{*} \supset \vec{I}^{(0)}=A\left(\mathcal{M}_{n}(\vec{r}, t)+[\overrightarrow{0}, \overrightarrow{0}]\right)-\mathcal{M}_{n}(\vec{r}, t)
$$

Evaluating the right hand side in RDA yields a lower bound for \vec{I}^{*}, and a benchmark for the size to be expected. Now iteratively try

$$
\vec{I}^{(k)}=2^{k} \cdot \vec{I}^{(0)}
$$

until computational inclusion is found, i.e.

$$
A\left(\mathcal{M}_{n}(\vec{r}, t)+\vec{I}^{(k)}\right) \subset \mathcal{M}_{n}(\vec{r}, t)+\vec{I}^{(k)}
$$

