Predicting outcomes of electric dipole and magnetic moment experiments

V. Baryshevsky¹ and P. Porshnev²

744. WE-Heraeus-Seminar "Towards Storage Ring Electric Dipole Moment Measurements"

¹Institute for Nuclear Problems, Belarusian State University

²(Past) Physics Department, Belarusian State University

Agenda

- EDM and AMM
 - P/T-odd quantities and model requirements
 - Spin equation for Dirac electrons (fermions)
- Dirac electrons versus QED electrons
 - Main hypothesis
- Spin equations with pseudoscalar correction
 - What does it give us?
- Final comments (prediction)

It is the derivations-free summary of our recent papers

arXiv: 2010.14218

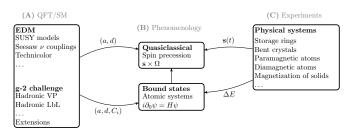
arXiv: 2012.11751

arXiv: 2101.05064 (Phys.Scr.)

EDM and AMM

EDM and AMM ecosystem

(How are QFT predictions connected with measurements?)



- Parts A and C are very active new extensions, verification, new tests, ...
- Part B is rigidly set solidly supported by available data so far (except muon g-2)

$$i\frac{\partial \mathbf{s}}{\partial t} = \mathbf{s} \times \Omega_{T-BMT}$$
 $H = -\frac{eg}{2m}\hat{\mathbf{s}}\mathbf{B} + \frac{e(g-1)}{2m}\hat{\mathbf{s}}(\mathbf{v} \times \mathbf{E})$

Successful matching of precise AMM data supports A-C, g-2 discrepancy questions them

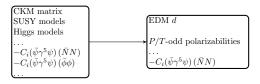
Is the phenomenological part a potentially "blind spot"?

• Until and if g-2/EDM challenge is resolved, every Part A-C must be checked thoroughly

EDM and AMM March 31, 2021

Quantities originated by symmetry violation

(Are we capturing all potential P/T-odd effects?)



- Discrete symmetry-violating effects are typically described
 - ▶ For "simpler" particles (electron, muon, ...), with $d \neq 0$
 - ▶ For composite systems, with $d \neq 0$ and P/T-odd polarizabilities
- \bullet P/T-odd polarizabilities mix magnetic and electric contributions
 - Applied electric field generates magnetic and vice versa
- ullet Suggestion that all types (atom, neutron, electron, ...) have nonzero P/T-odd polarizabilities was made in Baryshevsky1999-2004 (Phys.Rev.Lett.)

How this idea can be implemented in consistent way?

- What can be polarizability-like for particles (leveraging analogy)
- How to incorporate it into the existing and very constrained models

EDM and AMM March 31, 2021

Requirements for phenomenological model

(What do we expect from a good model?)

- Self-consistent motion and spin equations
 - ▶ BMT-like equation is gauge-invariant and Lorentz-covariant

$$\tfrac{\mathrm{d} s^\mu}{\mathrm{d} \tau} = \tfrac{ge}{2m} F^{\mu\nu} s_\nu + \tfrac{ae}{m} s^\rho F_{\rho\nu} u^\nu u^\mu - 2d \Big(\tilde{F}^{\mu\nu} s_\nu + s^\rho \tilde{F}_{\rho\nu} u^\nu u^\mu \Big)$$

For the laboratory system, Thomas-BMT precession follows as

$$\Omega = \frac{e}{m} \left[\left(a + \frac{1}{\gamma} \right) \mathbf{B} - \frac{a\gamma}{\gamma + 1} (\mathbf{v} \cdot \mathbf{B}) \mathbf{v} - \left(a + \frac{1}{\gamma + 1} \right) \mathbf{v} \times \mathbf{E} \right] + 2d \left[\mathbf{E} - \frac{\gamma}{\gamma + 1} (\mathbf{v} \cdot \mathbf{E}) \mathbf{v} + \mathbf{v} \times \mathbf{B} \right]$$

- Applicability conditions (quasiclassical) are in Mane2005
- Tested down to $\Delta a_e < 10^{-12}$, $\Delta a_\mu < 10^{-9}$, and $d_i < d_i^{\text{upper limit}}$

Acceptable model must satisfy strict requirements

- Equations must be gauge-invariant, Lorenz-covariant, free of artifacts
- Corrections to AMM must not exceed the existing uncertainty limits

EDM and AMM March 31, 2021

Spin equation for Dirac particles

(How do we arrive at spin motion equations?)

There exist three ways to derive BMT-like equation (with a and d terms)

	Heuristic	Foldy-Wouthuysen	WKB	
Starting point		Dirac Hamiltonian	Dirac Equation	
		$i\frac{\partial \psi}{\partial t} = H_D \psi$	$(i\partial \hspace{-0.08cm}/ - eA\hspace{-0.08cm}/ - \ldots)\psi = 0$	
Assumptions	Linear in s_μ and $F_{\mu u}$	$\psi = \mathit{U}_{\mathit{FW}} \psi'$	$q_0 = i\bar{\psi}\gamma^5\psi = 0$	
	$\mathbf{s}\times\mathbf{B}$ at rest	$\begin{pmatrix} \phi \\ \chi \end{pmatrix} \to \begin{pmatrix} \phi' \\ 0 \end{pmatrix}$	$\begin{pmatrix} \phi \\ \chi \end{pmatrix} \rightarrow \begin{pmatrix} \phi' \\ 0 \end{pmatrix}_{rest}$	
Result	Same BMT or Thomas-BMT like equation in weak-field limit			

Derivations lead to the same results based on

- Single first-order Dirac equation, simplified representation $\beta = \frac{q_0}{abab} = 0$
- T(CP)-symmetry violating effects are in *d*-term

EDM and AMM

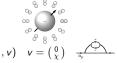
Dirac electrons versus QED electrons

(How can we extend the existing model non-controversially?)

Dirac electron (bare)

$$u=\left(egin{array}{c} \phi \ 0 \end{array}
ight)$$
 $\overline{u_p}$ no. Dirac equations $=1$

QFT electron (dressed)



no. Dirac equations $ightarrow \infty$

- The idea to take account of polarization cloud in phenomenological models is not new (Baryshevsky2000-2012, Baym2016)
- Specific realization and motivation were missing now we have g-2 challenge
- g-2 challenge might or might not require new phenomenological model (open question)

Assuming that an extension to existing phenomenology is required, how can it be done in non-controversial way?

EDM and AMM March 31, 2021

Main Hypothesis

(How to take account of polarization cloud non-controversially?)

Dirac electron (bare)

$$u_p = \left(egin{array}{c} \phi \ 0 \end{array}
ight) \qquad rac{\dot{u_p}}{\dot{u_p}}$$
no. Dirac equations $= 1$

QFT electron (dressed)

$$M_2(\ldots,v)$$
 $v=\begin{pmatrix}0\\\chi\end{pmatrix}$

no. Dirac equations $\to \infty$

- Main difference bare fermion is missing antifermion component
- A fermion is described by 16 bilinears (densities, current, spin, spin tensor), free fermion by 15 since $(i\bar{\psi}\gamma^5\psi)_{\text{free}}=0$ (there is only one remaining unused parameter!)
- Allowing nonzero $\beta \neq 0$ adds antifermion component to free fermions
- Hypothesis free fermion has a tiny nonzero pseudoscalar density $(i\bar{\psi}\gamma^5\psi)_{\rm free} \neq 0$

Extended model captures additional potential T/CP-violating effects

- ullet β is P- and T-odd, gauge-invariant and experimentally observable
- Effectively, a fermion is described with two Dirac equations (squared Dirac with $\beta \neq 0$)

EDM and AMM

T(CP)-symmetry violation and spin equations

(Can we extend well proven model in noncontroversial way?)

Step-by-step derivations for $\beta \neq 0$ are in arXiv: 2012.11751 and 2101.05064

• BMT-like equation now includes effective moments (2a' = g' - 2)

$$\frac{\mathrm{d} s^\mu}{\mathrm{d} \tau} = \frac{g'e}{2m} F^{\mu\nu} s_\nu + \frac{a'e}{m} s^\rho F_{\rho\nu} u^\nu u^\mu - 2d' \Big(\tilde{F}^{\mu\nu} s_\nu + s^\rho \tilde{F}_{\rho\nu} u^\nu u^\mu \Big)$$

ullet where they are approximately given by ($|eta| \ll 1$ and $|d|m/e \ll |a|$)

$$a' = a + d \frac{2m}{e} \beta$$
, $d' = d - a \frac{e}{2m} \beta$

For the laboratory system, modified Thomas-BMT precession is

$$\Omega = \frac{e}{m} \left[\left(a' + \frac{1}{\gamma} \right) \mathbf{B} - \frac{a'\gamma}{\gamma + 1} (\mathbf{v} \cdot \mathbf{B}) \mathbf{v} - \left(a' + \frac{1}{\gamma + 1} \right) \mathbf{v} \times \mathbf{E} \right] + 2d' \left[\mathbf{E} - \frac{\gamma}{\gamma + 1} (\mathbf{v} \cdot \mathbf{E}) \mathbf{v} + \mathbf{v} \times \mathbf{B} \right]$$

New model retains functional form of original T-BMT equation where

- Nonzero pseudoscalar density mixes moments; could be guessed heuristically
- Corrections to g-2 are of second degree of smallness
- ullet $T(\mathit{CP})$ -symmetry violation effects are given by means of d and eta

EDM and AMM March 31, 2021

Predictions

(What does it give us?)

The model predicts that these moments are measured

$$a^{\mathrm{exp}} = a + d \, rac{2m}{e} \, eta \, , \qquad \qquad d^{\mathrm{exp}} = d - a \, rac{e}{2m} \, eta \,$$

Several scenarios are possible

	$d^{e x p}$	$\Delta a = a^{exp} - a$	β	Comment
1	0	0	0	No NP
2	d^{exp}	0	0	NP, conventional model
3	d^{exp}	$\neq 0$	$\neq 0$	NP, mixed case, new model
4	0	$ a^{exp} > a $	$\neq 0$	NP, screened EDM, new model

New model extends number of experimental outcomes positive for NP

- Case 4 is most restrictive, $|a^{exp}| > |a|$ independently of signs of β , a, or d
- Inability to bring Δa to zero signals nonzero β
- Case 3 potentially favors heaviest fermions since screening scales $\sim m^{-2}$

March 31, 2021

Final comments I

(What might be the most probable scenario?)

Factoring in the observed trends and overall view of combined EDM/AMM tests

- No EDM observed across the board while significantly reducing upper bounds (neutron EDM by 5 orders of magnitude, electron by 9 orders, and so on)
- ullet Unresolved muon g-2 discrepancy (since 2005), might be same for electron (2021). Similar g-2 disconnects might exist for other fermions (but lacking theoretical accuracy)
- Hence EDM no observability and g-2 discrepancy might be universal phenomenon and two sides of the same coin

Cannot reject any positive case (2-4) yet

• However EDMs are getting quite small in case 2

EDM and AMM March 31, 2021

Final comments II

(What might be the most probable scenario?)

Our prediction (taken to extreme) sees this trend emerging

- Increasing accuracy of EDM/AMM tests will continue yielding null EDMs, while AMM tests will continue confirming the gap against corresponding theoretical evaluations
- The physical reason is the conversion of nonspherical electric moment into the additional magnetic anomaly by means of β (P/T-odd polarizability)

$$d^{\exp} = d - a \frac{e}{2m} \beta \approx 0$$
 \rightarrow $a^{\exp} = a(1 + \beta^2)$

- Storage rings are great opportunity for combined EDM/AMM tests
- Higher order corrections might partially un-screen EDM (work in progress)

Finally: must continue with combined EDM and AMM experiments - three scenarios (cases 2-4) are positive for NP

EDM and AMM March 31, 2021