

Simulation study of proton scattering on Carbon target and GEM-based polarimeter detector

Seongtae Park

Center for Axion and Precision Physics(CAPP) Institute for Basic Science, South Korea

> pEDM polarimeter meeting COSY, Julich May. 21, 2015

- 1. Simulation setup and detector geometry
- 2. Proton interaction in carbon target
- 3. Particle hit information on the detector plane
- 4. Rate capability and equal rate anode pad design for GEM detector
- 5. About GEM detector and cost estimate
- 6. DAQ system for GEM detector
- 7. Summary

MC Simulation (Geant4)

- Simulation tool: Geant4 v4.10.p02
- Physics list used for simulation: QGSP_BERT
- ➢ Input particle: protons, 1,000,000 POTs
 - ✓ P=701 MeV/c, $\Delta p/p$ =4.6x10⁻⁴, β=0.6, K=233 MeV
- ➤ Target length: 60mm
- ➤ Target dia.: 10 mm
- Target material: Graphite(C:N:O=99:0.7:0.3, 1.7 g/cm³)
- Distance between target and detector: 900 mm
- ➤ Absorber: Iron, Teflon, to be tested more...
- Absorber thickness: varied(0~60 mm)
- > GEM detector: Ar:CO₂=80:20 mixture, 3 mm drift gap
- > Other detector materials: Silicon, Plastic scintillator

Detector geometry

Design from the SR pEDM proposal

CAPP/IBS

Proton interaction in Carbon target

for Basi

Angle distribution of particles at target exit

6

PTheta

58150

59.49

35.96

Entries

Mean

RMS

18

Mean

RMS

20

ppElasCnt Entries 1000000

0.5307

0.1749

CAPP/IBS

Effect of target density

Target density: 1.7 g/cm³

- $\checkmark~10.2\%$ of primary protons are absorbed in the target.
- ✓ Primary proton hits on the detector plane: 2.5 %
- ✓ All hits on the detector plane: 6.6 %
- ✓ Elastic PP in angle 5-20°: 2.3 %(detector acceptance)

Target density: 2.2 g/cm³

- \checkmark 13.0% of primary protons are absorbed in the target.
- ✓ Primary proton hits on the detector plane: 3.2 %
- \checkmark All hits on the detector plane: 7.9 %
- ✓ Elastic PP in angle 5-20°: 2.9 %(detector

acceptance)

Seongtae Park/Center for Axion and Precision Physics

Secondary particles produced in the target

Normalized counts of secondaries Normalized by the number of primary protons(10000)

Particles on the detector plane/Detector acceptance

for Basie

Seongtae Park/Center for Axion and Precision Physics

CAPP/IBS

Beam parameters:

- 1. 701 MeV/c protons (E_k=233 MeV, β=0.6→v=1.8x10⁸ m/s)
- 2. Ring circumference 500 m.
- 3. Revolution frequency is about 0.36 MHz.
- 4. About 100 bunches
 - ✓ 5 m between bunches
 - ✓ 28 ns bunch spacing
 - ✓ 0.36MHz x 100=3.6x10⁷ bunches/s
- 5. 5x10¹⁰ particles/storage
 - ✓ 5x10⁸ particles/bunch
- 6. 4 polarimeters on the ring for CW/CCW beams
- ✓ Beam extraction for 1000s
- \checkmark Assuming full extraction at the constant extraction rate for the entire extraction
 - 5x10⁷ interactions/s
- ✓ $5x10^7/3.6x10^7=1.4$ interactions/bunch
- ✓ Assume 6.5 % of detector acceptance(including BG, from simulation)
 - 3.25x10⁶ hits on detector/s
 - 4 detectors(1024x4=4096 channels)
 - →800 hits/ch/s (including BG)
- ✓ For signal(2.4 % acceptance)
 - 1.2x10⁶ hits on detector/s
 - →300 hits/ch/s (signal)

GEM-based polarimeter concept

CAPP/IBS

Radial distribution of particle hits on the detector plane

All particle hit map on GEM detectors

Primary proton hit map on GEM detectors

Seongtae Park/Center for Axion and Precision Physics

Equal rate anode pads/Primary proton only

Primary proton hit map on GEM detectors

- \succ 128 ch/octant
- ➢ 8 octants/polarimeter(counter)
- ➢ 1024 ch/polarimeter
- > 300 Hz/ch(for signal)

Counting rate on the inner most pad= 857 Hz/cm^2 Counting rate on the outer most pad= 11 Hz/cm^2

Seongtae Park/Center for Axion and Precision Physics

Equal rate anode pads/BG included

Frames are overlapped to minimize dead area

> 800 Hz/ch(with BG)

Inner most pad area=89 mm² Outer most pad area=440 mm²

Counting rate on the inner most pad=899 Hz/cm² Counting rate on the outer most pad=182 Hz/cm²

279.36

What is GEM detector?

- Cathode window is Cu coated Polyimide.
- ✤ HV is distributed through a resistive network
- Double/triple GEM layers (G ~100/layer)

CAPP/**IBS**

Characteristics of GEM detectors/Cost estimate

- Detector efficiency: ~100%(for MIP)
- > Spatial resolution: 40μ m(perpendicular track), 200μ m(20° track)
- Time resolution: 15 ns(Ar:CO₂=70:30), 5 ns(Ar:CO₂:CF₄:iso-C₄H₁₀=65/8/20/7)
- Energy resolution: ~20% (with X-ray)
- > S/N ratio: 50(single GEM), 10^3 (double GEM)
- \blacktriangleright Gains: >10⁴
- Solution Gain uniformity: $\pm 10\%$ over active area(10x10 cm²)
- > No significant gain shift for irradiation rates up to $5 \times 10^5 \text{ Hz/mm}^2$
 - \checkmark No space charge or surface charging up
- Radiation hardness

Cost estimate (GEM chamber only)

- ✓ ~\$5000/octant GEM chamber with triple GEM
- ✓ 8 unit GEM counters per polarimeter layer
- ✓ 4 polarimeter systems for CW/CCW beams T_{atal} 4 x8x5000 \$100 000
 - → Total 4x8x5000=\$160,000

Other materials have to be considered:

✓ Gas system, DAQ system, Other assembly system like supporting structures etc..

16

DAQ system/ GEM test

for Basi

- ✤ SRS: Scalable Readout System
- $\checkmark\,$ Developed and distributed by the RD51 collaboration
- ✓ FE Hybrid+ adapter card+FEC+DAQ PC
 - Hybrid: APV25, VMM, GEMROC, Beetle, etc
 - APV: analog chip
 - VMM: digital chip with peak detection and time information

Test at CERN GDD lab.

\bigstar 10x10 cm² GEM chamber

- ✤ Triple GEMs
- **♦** Ar:CO₂=70:30
- ✤ HV=3900,3800V
- ♦ P=400 μ m strip \rightarrow R~115 μ m

Trigger signal from the bottom electrode of the third GEM.

Rate= ~ 280

Fe55 energy spectrum

Seongtae Park/Center for Axion and Precision Physics

20

noise

500

Summary and plans

- 1. MC simulation for detector design, FOM, systematic error study and so on.
 - ✓ Adding spin-orbit interaction in the Geant4 code(Hoyong Jeong)
- 2. Establishing lab. for detector construction and test
 - \checkmark Clean room and other infra-structures
- 3. Working on DAQ system for GEM detectors
 - \checkmark Visited CERN GDD lab. to learn the DAQ system and analysis program
 - ✓ Ordered one mini SRS system
- 4. Will start the detector design soon base on the results of the simulation
 - ✓ Need information on the space at the polarimeter sections for the detector installation
 - ✓ Diameter of beam pipe, longitudinal space available for detector stack etc..
- Small GEM detector (10x10 cm2) will be ready soon and tested with SRS DAQ
 - ✓ Radiation source: Fe-55, Cs-137, Ru-106, Sr-90 etc
 - ✓ Cosmic rays

Center for Axion and Precision Physics (CAPP/IBS, KAIST)

We are working on:
Axion search
Proton/Deutron EDM
Muon g-2 experiment
Etc.

http://capp.ibs.re.kr/html/capp_en/ Located at KAIST campus in Daejeon, South Korea