# EDM search experiments

WE Heraeus seminar 'Towards Storage Ring EDM Measurements' March 29-31, 2021

#### K.Kirch, ETH Zurich – PSI Villigen, Switzerland





### Some motivation

- Permanent EDM of fundamental spin systems are the most sensitive probes of CPV with no SM background yet
- Experiments test new physics (way) beyond TeV scale
- Explanations of the Baryon Asymmetry of the Universe require additional CP violation; could show in EDM
- Hadronic EDM measure  $\theta_{\text{OCD}}$ , e.g.  $\theta_{\text{OCD}} \approx 10^{16} \text{x} \text{ d}_{\text{n}} / e \text{cm}$
- $\theta_{OCD} = 0$  might be due to axions; EDM very sensitive probe



**Observed:**  $(n_{\rm B}-n_{\rm B}^{-})/n_{\gamma}=6x10^{-10}$ SM expectation:

Sakharov 1967: **B**-violation C & CP-violation non-equilibrium JETP Lett.5(1967)24





#### The Quantum Theory of the Electron

P. A. M. Dirac

*Proc. R. Soc. Lond. A* 1928 **117**, doi: 10.1098/rspa.1928.0023, published 1 February 1928

where E and H are the electric and magnetic vectors of the field.

This differs from (1) by the two extra terms

$$rac{eh}{c}(\sigma,\mathbf{H})+rac{ieh}{c}
ho_1(\sigma,\mathbf{E})$$

in F. These two terms, when divided by the factor 2m, can be regarded as the additional potential energy of the electron due to its new degree of freedom. The electron will therefore behave as though it has a magnetic moment eh/2mc.  $\sigma$  and an electric moment ieh/2mc.  $\rho_1 \sigma$ . This magnetic moment is just that assumed in the spinning electron model. The electric moment, being a pure imaginary, we should not expect to appear in the model. It is doubtful whether the electric moment has any physical meaning, since the Hamiltonian in (14) that we started from is real, and the imaginary part only appeared when we multiplied it up in an artificial way in order to make it resemble the Hamiltonian of previous theories.





\* Often a single source of CPV is assumed, e.g. eEDM for molecular EDM or  $\theta_{QCD}$  for n, 199Hg; \*\* see Ghosh&Sato, PLB777(2018)335 for leptons \*\*\* see Pospelov&Ritz, PRD89(2014)056006; eEDM 1E-38  $\rightarrow$  1E-44 ecm



### An overview



Disclaimer: CKM and strong CP contributions are sometimes rough guesses  $\rightarrow$  would need some more careful evaluation

Graphics courtesy P. Mohanmurthy



### Atoms and molecules



Extract the best limits for eEDM, CPV eN interactions and nuclear moments. Need to disentangle various sources. Need atomic and nuclear theory. Uncertainties in the theoretical calculations can be unknown and large.



## The strongest experimental limit: <sup>199</sup>Hg



TABLE III. Limits on *CP*-violating observables from the <sup>199</sup>Hg EDM limit. Each limit is based on the assumption that it is the sole\*contribution to the atomic EDM. In principle, the result for  $\mathbf{d}_n$  supercedes [11] as the best neutron EDM limit.

| Quantity                      | Expression                                                    | Limit                                | Ref.     |
|-------------------------------|---------------------------------------------------------------|--------------------------------------|----------|
| $\mathbf{d}_n$                | $S_{Hg}/(1.9 \text{ fm}^2)$                                   | $1.6 \times 10^{-26} \ e \ {\rm cm}$ | [21]     |
| $\mathbf{d}_p$                | $1.3 \times \mathbf{S}_{\mathrm{Hg}} / (0.2 \ \mathrm{fm}^2)$ | $2.0 \times 10^{-25} e \mathrm{cm}$  | [21]     |
| $\bar{g}_0$                   | $S_{Hg}/(0.135 \ e \ fm^3)$                                   | $2.3 \times 10^{-12}$                | [5]      |
| $\bar{g}_1$                   | $S_{Hg}/(0.27 \ e \ fm^3)$                                    | $1.1 \times 10^{-12}$                | [5]      |
| $\bar{g}_2$                   | $S_{Hg}/(0.27 \ e \ fm^3)$                                    | $1.1 \times 10^{-12}$                | [5]      |
| $\bar{	heta}_{QCD}$           | $\bar{g}_0/0.0155$                                            | $1.5 \times 10^{-10}$                | [22,23]  |
| $(\tilde{d}_u - \tilde{d}_d)$ | $\bar{g}_1/(2 \times 10^{14} \text{ cm}^{-1})$                | $5.7 \times 10^{-27}$ cm             | [25]     |
| $C_S$                         | $d_{\rm Hg}/(5.9 \times 10^{-22} \ e {\rm cm})$               | $1.3 \times 10^{-8}$                 | [15]     |
| $C_P$                         | $d_{\rm Hg}/(6.0 \times 10^{-23} \ e {\rm cm})$               | $1.2 \times 10^{-7}$                 | [15]     |
| $C_T$                         | $\mathbf{d}_{\rm Hg}/(4.89 \times 10^{-20} \ e {\rm cm})$     | $1.5 \times 10^{-10}$                | see text |

$$|d_{\rm Hg}| < 7.4 \times 10^{-30} e \,{\rm cm} \,(95\% \,{\rm C.L.})$$

Graner et al., PRL116(2016)161601

\* e.g. otherwise  $\theta_{QCD} \sim < 1E-6$ Chupp, Ramsey-Musolf, PRC91(2015)035502



## Particles



A mix of indirect and direct bounds



### Electron: The tightest EDM limit on a fundamental fermion

| System                             | Electron EDM<br>limit | Latest<br>reference | Improving |
|------------------------------------|-----------------------|---------------------|-----------|
| <sup>232</sup> Th <sup>16</sup> O  | 2.0E-29 ecm           | Nature562(2018)355  | У         |
| <sup>180</sup> Hf <sup>19</sup> F+ | 13E-29 ecm            | PRL119(2017)153001  | У         |
| <sup>174</sup> Yb <sup>19</sup> F  | 105E-29 ecm           | NJP14(2012)103051   | у         |

Remarkably: <sup>199</sup>Hg and 'sole source'  $\rightarrow$  eEDM < 104E-29 ecm









μ

# Muon:

The best direct EDM limit on a fundamental fermion

Side analysis of muon g-2 experiment  $|d_{\mu}| \le 1.8 \times 10^{-19} e \text{ cm} (95\% \text{ C.L.}),^*$ 

Bennett et al., RD80(2009)052008

- Improvement to ~1E-21 ecm possible as byproduct of new g-2
- Improvement to few E-23 ecm with dedicated (small) storage ring
  - demonstrator for frozen spin ring EDMBSM theory motivation!?

\*indirectly, using e-EDM Limit and sole source assumption: < 0.9E-19 ecm, see PRD98(2018)113002

EDM (e.cm)



## **Neutron and Proton**



- Present best proton (and neutron) EDM limit derived from <sup>199</sup>Hg under the 'sole source assumption'.
- Present best direct nEDM limit 1.8E-26 ecm (Abel et al., PRL124(2020)081803)
- neutron EDM constrains θ<sub>QCD</sub> < 1E-10 under single source assumption (as does <sup>199</sup>Hg)
- finite neutron and proton EDM could eventually support or rule out θ<sub>QCD</sub> as source of EDM signals together with advanced lattice QCD





#### pEDM

- Storage ring for p, d, …: JEDI, Storage Ring Collaboration, CPEDM
  - Projecting 10<sup>-29</sup>ecm sensitivity
  - Staged approach with precursor at COSY, demonstrator ring, full pEDM ring

#### Using <sup>205</sup>TIF molecules: CeNTREX

- Projecting 3x10<sup>-26</sup>ecm pEDM sensitivity with generation-1 TIF beam
- Expecting 10-100x improvement when implementing generation-2 laser cooling



р

10<sup>-15</sup>

10<sup>-18</sup>

10<sup>-21</sup>

10<sup>-24</sup>

10<sup>-27</sup>

10<sup>-30</sup>

10<sup>-33</sup>

EDM (e.cm)





# Neutron

- Several nEDM efforts world-wide: presently leading effort at PSI (more at SNS, ILL, LANL, TRIUMF, PNPI, ESS)
- nEDM: the prototype of experimental EDM search for symmetry violations, since 1950
- nEDM poses the strong CP problem
- together with EDM limits of the e<sup>-</sup> and <sup>199</sup>Hg giving some of the tightest BSM constraints
- Discovery potential at the current limit; could be SM-QCD contribution



# How to measure electric dipole moments ?







# How to measure electric dipole moments ?

Measure spin precession frequencies in electric (and magnetic) fields





# How to measure electric dipole moments ?

- Measure spin precession frequencies in electric (and magnetic) fields
- If that doesn't work: try something else, like
  - cross sections
  - T / CP odd decay correlations
  - · ...





How to measure the neutron (or other) electric dipole moment ?





## nEDM at PSI







UK

# The nEDM spectrometer





### Ramsey's method

 $B_0$ 

 $B_0$ 





-111

7







### A sequence of cycles (nEDM data)





### Control of the B-field gradients



PHYSICAL REVIEW A 99, 042112 (2019)

Magnetic-field uniformity in neutron electric-dipole-moment experiments



### Control of the B-field gradients

### 3) 15 Cesium magnetometers



Optically Pumped Cs Magnetometers Enabling a High-Sensitivity Search for the Neutron EDM, Phys.Rev. A 101 (5) (2020) 053419



4) Field mapping arXiv:2103.09039 5) Scan for magnetic contaminations at BMSR2, PTB Berlin







### Crossing point analysis



ETH



### Budget of systematic errors

Table I: Summary of systematic effects in  $10^{-28}$  ecm. The first three effects are treated within the crossing-point fit and are included in  $d_{\times}$ . The additional effects below the line are considered separately.

| Effect                                                    | $\operatorname{shift}$ | erro   |
|-----------------------------------------------------------|------------------------|--------|
| Error on $\langle z \rangle$                              | -                      | 7      |
| Higher order gradients $\hat{G}$                          | 69                     | 1(     |
| Transverse field correction $\langle B_{\rm T}^2 \rangle$ | 0                      | 5      |
| Hg EDM[8]                                                 | -0.1                   | 0.1    |
| Local dipole fields                                       | -                      | 4      |
| $v \times E$ UCN net motion                               | -                      | 2<br>2 |
| Quadratic $v \times E$                                    | -                      | 0.1    |
| Uncompensated G drift                                     | -                      | 7.5    |
| Mercury light shift                                       | -                      | 0.4    |
| Inc. scattering <sup>199</sup> Hg                         | -                      | 7      |
| TOTAL                                                     | 69                     | 18     |

#### **Field mapping**

**PTB contamination scans** 

#### **Cesium magnetometers**

← was not anticipated... therefore poorly controlled

False Hg EDM

Other effects



Previous result (ILL), J.M. Pendlebury et al, Phys. Rev. D 92 092003 (2015)

$$d_n = (-0.2 \pm 1.5_{\text{stat}} \pm 1.0_{\text{syst}}) \times 10^{-26} \text{ ecm}$$

# NEW RESULT (PSI) $d_n = (0.0 \pm 1.1_{\text{stat}} \pm 0.2_{\text{syst}}) \times 10^{-26} e \text{cm}$







### Search for nEDM oscillations with time PHYS. REV. X 7, 041034 (2017)





### nEDM search for ultra-light axion dark matter



Oscillating nEDM data could come from the interaction of ultralight axions which could be the Dark Matter in the Universe. **nEDM places the first laboratory limits.** on **axion – gluon** couplings

Abel et al., PRX7(2017)041034



### nEDM collaboration moves on to n2EDM



#### nEDM collaboration: 50 researchers from 15 institutions and 7 countries. Part of the collaboration in front of nEDM.



#### **Constructing n2EDM**

Meanwhile UCN area South has just been cleared of the nEDM setup and is being prepared for n2EDM which will be 10 times more sensitive.









# 2018: n2EDM at PSI

035



## 2018: n2EDM at PSI

brist (srunth)

obrist

drift gram

at 500 peruste

deviat geroate

obrist merints . com

obrist pervists

obvicz germete

obrist















ETH







### Magnetic-field generation: coil systems

- > Produce a very uniform B0 field  $(1\mu T)$
- Produce specific gradients
- Hold the UCN polarisation
- Neutron spin manipulation





Coil system and vacuum tank ready at LPC Caen







# Magnetic field measurement

#### Hg magnetometry

Polarized Hg atoms (laser readout)

#### Function:

-Correction field drifts -Compensation of systematics related to first-order gradients



#### Cs magnetometry

Array of 112 Cs sensors

**Function:** Instantaneous measurement of magnetic-field uniformity



Based on fluxgate sensor

#### Function (Offline):

-Coil's cartography -Control high-order gradients





G. Ban et al., Nucl. Instrum. Methods A 896, 129 (2018)

C. Abel et al., Phys.Rev. A 101 (5) (2020) 053419

C. Abel et al., Mapping of the magnetic field to correct systematics, in preparation for Phys. Rev. A (2021), arXiv:2103.09039



## n2EDM

#### Technical design report published on arxiv 01/21 → EPJ C

#### The design of the n2EDM experiment

nEDM collaboration

N. J. Ayres<sup>1</sup>, G. Ban<sup>2</sup>, L. Bienstman<sup>3</sup>, G. Bison<sup>4</sup>, K. Bodek<sup>5</sup>, V. Bondar<sup>1,a</sup>, T. Bouillaud<sup>6</sup>,
E. Chanel<sup>7</sup>, J. Chen<sup>2</sup>, P.-J. Chiu<sup>1,4</sup>, B. Clément<sup>6</sup>, C. Crawford<sup>8</sup>, M. Daum<sup>4</sup>,
B. Dechenaux<sup>2</sup>, C. B. Doorenbos<sup>1,4</sup>, S. Emmenegger<sup>1</sup>, L. Ferraris-Bouchez<sup>6</sup>,
M. Fertl<sup>9</sup>, A. Fratangelo<sup>7</sup>, P. Flaux<sup>2</sup>, D. Goupillière<sup>2</sup>, W. C. Griffith<sup>10</sup>, Z. D. Grujic<sup>11</sup>,
P. G. Harris<sup>10</sup>, K. Kirch<sup>1,4</sup>, P. A. Koss<sup>3,d</sup>, J. Krempel<sup>1</sup>, B. Lauss<sup>4</sup>, T. Lefort<sup>2</sup>, Y. Lemière<sup>2</sup>,
A. Leredde<sup>6</sup>, M. Meier<sup>4</sup>, J. Menu<sup>6</sup>, D. A. Mullins<sup>7</sup>, O. Naviliat-Cuncic<sup>2</sup>, D. Pais<sup>1,4</sup>,
F. M. Piegsa<sup>7</sup>, G. Pignol<sup>6,b</sup>, G. Quéméner<sup>2</sup>, M. Rawlik<sup>1,c</sup>, D. Rebreyend<sup>6</sup>, I. Rienacker<sup>1,4</sup>,
D. Ries<sup>12</sup>, S. Roccia<sup>6</sup>, K. U. Ross<sup>12</sup>, D. Rozpedzik<sup>5</sup>, W. Saenz<sup>2</sup>, P. Schmidt-Wellenburg<sup>4</sup>,
A. Schnabel<sup>13</sup>, N. Severijns<sup>3</sup>, B. Shen<sup>12</sup>, T. Stapf<sup>4</sup>, K. Svirina<sup>6</sup>, R. Tavakoli Dinani<sup>3</sup>,
S. Touati<sup>6</sup>, J. Thorne<sup>7</sup>, R. Virot<sup>6</sup>, J. Voigt<sup>13</sup>, N. Yazdandoost<sup>12</sup>, J. Zejma<sup>5</sup>, G. Zsigmond<sup>4</sup>

ETH Zürich, Institute for Particle Physics and Astrophysics, CH-8093 Zürich, Switzerland
 <sup>2</sup>Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen, France
 <sup>3</sup>Instituut voor Kern- en Stratingsfysica, University of Leuven, B-3001 Leuven, Belgium
 <sup>4</sup>Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
 <sup>5</sup>Marian Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Cracow, Poland
 <sup>6</sup>LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble, France
 <sup>7</sup>University of Bern, Albert Einstein Center for Fundamental Physics, CH-3012 Bern, Switzerland
 <sup>8</sup>University of Kentucky, Lexington, USA
 <sup>9</sup>Institut für Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, UK
 <sup>11</sup>Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia
 <sup>12</sup>Department of Chemistry - TRIGA site, Johannes-Gutenberg-Universitat, 55128 Mainz, Germany

13 Physikatisch Technische Bundesanstalt, Berlin, Germany

Received: date / Accepted: date

# 2EDN The design of the arXiv:2101.08730v2 [physics.ins-det] 22 Jan 202 n2EDM EXPERIMENT The nEDM Collaboration

#### Baseline design sensitivity: 1x10<sup>-27</sup>ecm + upgrade options









### Thank you!

