

The JEDI Polarimetry Concept

Target & Detector System

May 21, 2015 | Irakli Keshelashvili – IKP-2 |

Table of content

- Introduction
- Target
- Detector
- Readout
- Summary

EDM – <u>Precision Experiment !!!</u>

- "Effective" Target !!! {C Carbon }
- > 100% DAQ Efficiency !!!
- ▶ **Full ♦ Acceptance** in Reasonable FOM region !!!
- > No Magnetic / Electric Field !!!
- Stability Long / Short Term !!!
- ▶ Best Reaction $\underline{dC} \rightarrow \underline{dC}$ Identification !!!

$dC \rightarrow dC$ Elastic Scattering @ 270 MeV

Y. Satou et al., Phys. Lett. B 549, 307 (2002).

Towards JEDI Polarimetry

May 21, 2015

Targets used @ EDDA

JüDiT – Jülich "Ballistic" Diamond Pellet Target

JüDiT – Jülich "Ballistic" Diamond Pellet Target

dedicated simulations ongoing (Master Thesis)

Proposed Detector Concept: Layout

Detector Concept: Matter of Simulation Scintillation Materials

LYSO	/ BGO	
		PMT

Sci.	+W	+ Sc	i.
			DMT
			TIAT

	LYSO	BGO	Plastic
[g/cm ³]	<u>7.1</u>	7.1	1.05
Devay [ns]	<u>40</u>	300	<u>2.4</u>
L. Y. $\%$ NaI(Tl)	<u>75</u>	25	25
S. Peak [nm]	420	480	420
n-index	<u>1.82</u>	2.15	1.58
Melt. ^o C	<u>2050</u>	1050	75
Hygrosc.	No	No	No
Radioact.	Yes	No	No

-

MC Simulation (GEANT4)

G. Macharashvili & P. Maanen

May 21, 2015

G4: Elastic $dC \rightarrow dC$ **Energy Distribution**

G4: Inelastic $dC \rightarrow X$ Energy Distribution

Prototype Test

Cosmic Signal vs Intrinsic Radiation

Irakli Keshelashvili - IKP-2

Cosmic Signal vs Intrinsic Radiation

Irakli Keshelashvili - IKP-2

Summary

- Proposed HCAL is under intensive MC simulation
- Hardware development: LYSO, PMT, SiPM/MPPC, HV-Divider
- Realistic mini data acquisition is under construction (ZEA-2)
- Mechanical engineers are ready to support (ZEA-1)
- By the end of 2015, first prototype test is expected (dedicated beam request submitted)

Cosmic Signal

Pellet Vs. Wire

May 21, 2015

Hardware Progress

P. Wüstner, Tanja Hahnraths-von der Gracht & T. Sefzick

May 21, 2015

Irakli Keshelashvili – IKP-2

Detector Cost Understanding ($\Theta_{max} = 20^{\circ}$ **)**

LYSO Prototype

