

#### SIMULATION MODEL IMPROVEMENTS AT COSY USING THE LOCO ALGORITHM

31.03.2021 I 744. WE-HERAEUS-SEMINAR | VERA PONCZA



Member of the Helmholtz Association

#### **MOTIVATION**



# How to achieve a more realistic simulation model of COSY?



#### **MOTIVATION**



- Magnet misalignments
- Gradient errors
- Close standing magnets
- . .

## What effects influence the particle and spin motion?



#### **MOTIVATION**



- 1. Stepwise approach: one effect at a time
- 2. Fitting several parameters at the same time

# How to incorporate effects in a simulation model?



#### STEPWISE APPROACH: ONE EFFECT AT A TIME MAGNET MISALIGNMENTS



**COSY dipoles** 

#### Dipole and quadrupole misalignments were measured in each direction



#### STEPWISE APPROACH: ONE EFFECT AT A TIME MAGNET MISALIGNMENTS

#### Simulated closed orbits in horizontal and vertical direction



- Magnet misalignments lead to distortions of the closed orbits
- The uncertainties of the magnet positions measurement were taken into account:

$$\Delta \tilde{x} = \Delta x_{\text{measured}} + \mathcal{N}(0, \sigma_{\Delta x})$$



### **STEPWISE APPROACH: ONE EFFECT AT A TIME**

Page 7

#### **DETERMINATION OF INVARIANT SPIN AXIS**

Invariant spin field  $\hat{n}$ :  $\hat{n}(\vec{z}, \theta + 2\pi) = \hat{n}(\vec{z}, \theta)$ 

One turn spin map  $R : R(\vec{z}_i, \theta) \hat{n}(\vec{z}_i, \theta) = \hat{n}(\vec{z}_f, \theta)$ 







- Perform spin tracking over several turns
- For each possible combination of 3 spin vectors:
  - Determine normal vector to the resulting plane
- Calculate the average invariant spin axis  $\langle \vec{n} \rangle$  out of all normal vectors



#### STEPWISE APPROACH: ONE EFFECT AT A TIME MAGNET MISALIGNMENTS

Distribution of tilt angles of the invariant spin axis in the y-x-plan for 10000 random Gaussian magnet misalignments



### Systematic limit of the EDM value due to measurement uncertainties

The EDM tilts the invariant spin axis by:

 $\xi_{\rm EDM} = \xi_{\rm measured} - \mu_{\xi_{\rm magnets}}$ 

The threshold angle for the  $3\sigma$  level

 $\xi_{EDM} = -0.0000454215 \, rad$ 

The threshold (minimal resolvable) EDM value:

 $d_{3\sigma} = 1.49 \cdot 10^{-19} \, e \cdot cm$ 



Page 8

#### FITTING SEVERAL PARAMETERS AT THE SAME TIME



Member of the Helmholtz Association

Page 9

### LOCO ALGORITHM

Linear Optics from Closed Orbit

Proceeding IPAC 2016: "Model driven machine improvement of COSY based on ORM data" (C. Weidemann, M. Bai, F. Hinder, B. Lorentz)

Forschungszentrum



#### **ORBIT RESPONSE MATRIX (ORM)**



Member of the Helmholtz Association

Page 11

Forschungszentrum

### **ITERATION PROCESS**



$$\chi^2 = \sum_{i,j} \frac{\left(M_{i,j}^{COSY} - M_{i,j}^{model}\right)^2}{\sigma_{COSY\,i,j}^2} + \frac{1}{\sigma_0^2} \sum_k^{N_V} \omega_k^2 \Delta V_k$$

- 1. First guess **V**<sub>0</sub>
- 2. Calculate model response vector  $R(V_0)$
- 3. Measure response vector R(V) by varying steerers
- 4. Compute Jacobian **J** by varying model parameters
- 5. Pseudoinverse Jacobian  $J^{-1}$  calculated via SVD
- 6. Obtain new model parameter vector V
- 7. Start new iteration with  $V = V_0$



#### **TESTING**

Quadrupole gradient errors (assuming perfect BPMs)



Member of the Helmholtz Association

#### **MEASUREMENTS (OCTOBER 2019)**





#### **MEASUREMENTS (OCTOBER 2019)**

- Weights prevent unrealistic path to global minimum.
- First estimate for weights are the  $\chi^2$  contributions of each fit parameter.
- The global minimum is reached independetly of the actual weights.



- All position changes are mostly within the  $2\sigma$  range of the Stollenwerk accuracy of  $\sigma = 0.2 \text{ mm}$ .
- Some QPs have larger offsets in horizontal direction.
- The QPs are the same that Tim Wagner<sup>\*</sup> found during his beam time and the offsets are similarly large.



#### **MATCHING THE ORBIT**

- Fitting the steerer strengths using the usual orbit correction algorithm.
- Target orbit = the measured orbit (October 2019)



#### FINAL MODEL VS. MEASUREMENT





|                   | Simulation | Measurement |
|-------------------|------------|-------------|
| $Q_x$             | 3.58210    | 3.57119     |
| $Q_{\mathcal{Y}}$ | 3.59430    | 3.58641     |
| $\nu_s$           | 0.16143665 | 0.16099023  |
| $n_x$             | -0.003122  | -0.00348    |
| $n_s$             | 0.0009970  | 0.00557     |





- There is a systematic way of investigating the influence of different model parameters: LOCO algorithm.
- The algorithm was succesfully implemented into Bmad.
- A LOCO fit was performed using quadrupole gradients and positions to fit the model.
- An additional orbit matching was done by fitting the steerer strengths.
- The model could be clearly improved.
- The longitudinal component of the invariant spin axis is still not fully understood.



#### **THANK YOU**

