

Time Stamping, Spin Tune, Feedback

Volker Hejny Forschungszentrum Jülich

- Reminder: time stamping, how, why?
- Spin tune extraction
- Some outlook: online feedback systems
- Requirements for a future DAQ

Aim: Remind everybody to consider these requirements / measurement goals already at the design stage of the polarimeter / DAQ

Experiment

Conditions

• polarized deuteron beam, p = 0.97 GeV/c horizontal precession with $f_s \approx 120$ kHz event rate $\approx 5000 \text{ s}^{-1}$ $v_s \approx -0.161 \rightarrow 6$ turns / precession

Detector signals

 $N^{up,down} \propto 1 \pm PA \sin(2\pi \cdot f_s t) = 1 \pm PA \sin(2\pi \cdot v_s n_{turns})$ P: polarisation, A: analysing power

Primary goal

- follow the polarisation vector and extract polarisation w/o knowing the exact precession frequency (different clocks!)
- example: $\Delta \phi \leq 1$ rad after 1s $\rightarrow \Delta f_s \leq 0.3$ Hz, $\Delta \nu \leq 4 \cdot 10^{-7}$

Measurement

COSY RF:

- every 100th signal measured
 → interpolation
- precision in DAQ about 1ns per interval (sine wave → discr.)

Detector signals:

- turn number since T₀ via COSY RF
- fractional time: distribution within the bunch

Measurement

Spin tune:

- timing precision secondary
- counting turns:

$$\varphi_{tot} = 2\pi N_{turn} \nu_s$$

$$\varphi_s = \varphi_{tot} \mod 2\pi$$

$$\propto 1 + PA \sin (\varphi_s + \Delta \varphi)$$

Measurement

Spin tune:

• counting turns:

$$\varphi_{\text{tot}} = 2\pi N_{\text{turn}} \nu_s$$

$$\varphi_s = \varphi_{\text{tot}} \mod 2\pi$$

$$\propto 1 + PA \sin (\varphi_s + \Delta \varphi)$$

• v_s not known *a priori* \rightarrow scanning v_s for $\Delta t \approx 1$ s

Alternatives: fourier analysis, unbinned likelihood fit

V.Hejny, Time Stamping / Feedback systems

Improvement of σ_{v_s}

V.Hejny, Time Stamping / Feedback systems

Results: spin tune v_s

- spin tune v_s can be determined to $\sigma_{v_s} \approx 10^{-8}$ in $\Delta t \approx 2s$
- average $\overline{v_s}$ in 1 cycle (≈ 100 s) determined to $\sigma_{v_s} \approx 10^{-10}$
- one application: study long term stability of the ring
- future application: dedicated online feedback systems

Stability

Origin of spin tune drifts? Long term stability of RF systems?

After t = 40s: Δt (COSY RF, TDC clock) < 100 ns For systematic studies: precise clock with excellent long-term stability needed

Feedback systems

- Spin tune / frequency analysis can be done in real time
- Observables:
 - spin tune
 - small changes in spin tune (phase advances)
 - precise, relative measurement of frequencies: COSY RF, solenoid RF, Wien filter RF, etc.
 - phase relations: spin tune \leftrightarrow all other oscillators
- Possible objectives:
 - stabilize spin tune by adjusting γ via COSY RF
 - prepare and maintain resonance conditions (solenoid, Wien filter, ...)
 - maintain phase lock between spin tune and other oscillators

Possible options

- Software only, using data stream from DAQ possible issues: decoding, variable latency, influence on DAQ
- FPGA based

advantage: less timing issues, only counting of periods

- a) integrated in DAQ read-out boards possible issues: still relies on DAQ, inter-module communication
- b) stand-alone system
 - possible issues: generation of detector (trigger) signals

What to keep in mind for a future DAQ

- Time stamping, offline analysis
 - high precision (UTC) time stamps
 (≈ 10⁻¹¹ in τ = 1000s, state-of-the-art ?, e.g. GPS based)
 and / or
 - reference oscillator
 - all frequencies (generator, pick up?) in DAQ
- Feedback system
 - online PID, on board / external trigger depending on method
 - frequency generators: freq. and phase smoothly adjustable
- Single, central time base for everything (DAQ, generators) ?