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Hierarchy of EDM Scales
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Effective CPV Lagrangian at Hadronic Scale

2 -
E‘é%fi, _ _%@(;G dim=4 QCD #-term

— % Z dqq(o - F)ysq dim=5 Quark EDM (¢EDM)

q:u7d7s7c

- % Z dy9sq(0 - G)vsq dim=5 Quark Chromo EDM (CEDM)

q=u,d,s,c
+ dw%GGG dim=6 Weinberg’s 3g operator
+ Z CZ-(4Q) O§4Q) dim=6 Four-quark operators

i

® < O(10~8 — 10~ '1): Strong CP problem
e Dim=>5 terms suppressed by d, ~ (v)/A%,,; effectively dim=6
e All terms up to d = 6 are leading order

5/35



Contributions to the Neutron EDM d,,

dp=0-Cy+dy- Cqepm +(i(, ~Ccepm + -+

e SM and BSM theories )
— Coefficients of the effective CPV Lagrangian (0, d,, d,, . ..)

e Lattice QCD
— Nucleon matrix elements in presence of CPV interactions
Cyp = (N[J"M|N)lg
Cqepm = (N|JT"MIN) |qepm

Ccrpm = (N|JEM|N) |cepM
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Lattice QCD = Physical Results

e Removing Excited state contamination
— Lattice meson and nucleon interpolating operators also couple to excited states

* Renormalization: Lattice scheme — continuum MS
— involves complicated/divergent mixing

e Heavier — Physical Pion Mass. Almost there!
—As M, — 135 MeV = larger errors as computational cost increases

¢ Finite Lattice Spacing
— Extrapolate from finite lattice spacings 0.045 < a < 0.15 fm

® Finite Volume
— Finite lattice volume effects small in most EDM calculations for ML > 4

Extrapolate data at {a, M, ML} t0o a = 0, M, = 135 MeV, ML — oo
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Neutron EDM from Quark EDM term

2
E(({?,({ = — ‘;;JS 2§GG dim=4 QCD 6-term
327
i _ .
5 Z deq(o - F)ysq dim=5 Quark EDM (qEDM)
q=u,d,s
— é Z (Z(Igsﬁ(o - G)y5q dim=5 Quark Chromo EDM (CEDM)
q=u,d,s
+ d“,g—fGGG dim=6 Weinberg’s 3g operator
+ Z C; o) 4(1 dim=6 Four-quark operators
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Cqepm are given by the Tensor Charges

¢ |leading contributions of Quark EDMs are given by the tensor charges ¢,

Y dgg(o-Fysqg —  dy = dug} + dagf + dsgi + degi

q:u7d7s7c

<N|60',uuquv> = gfjl'ﬁNUuuuN

® d, oc m, in many models = Precision determination of g{s’c} is important

T

“Disconnected” diagram is noisy (expensive), small, but only contribution for g,

{s:c}
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gEDM: FLAG2019 and Current Status

O
Collaboration Ny o N a7 gl g%
PNDME 20 2+1+1 A° 0.783(27)(10) ~0.205(10)(10)
ETM19  2+1+41 = 0.729(22) ~0.2075(75)
PNDME 18B 24141 ! 0.784(28)(10)#* —0.204(11)(10)#
PNDME 16 2+1+1 i 0.792(42)#& —0.194(14)#&
Mainz 19 241 0.77(4)(6) ~0.19(4)(6)
JLQCD 18 241 = 0.85(3)(2)(7) —0.24(2)(0)(2)
ETM 17 2 = 0.782(16)(2)(13) ~0.219(10)(2)(13)

97

PNDME 20 2+1+1 A¢ ~0.0022(12)
ETM19  2+1+41 = ~0.00268(58)
PNDME 18B 2+1+1 1 —0.0027(16)#
Mainz 19 21 ~0.0026(73)(42)
JLQCD18  2+1 = —0.012(16)(8)
ETM 17 2 = ~0.00319(69)(2)(22)
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Constraints on BSM from gEDM and Future Prospects

low
ds [xlO'Zse-cm]

10
0
-10

eV

d d [><10'25e~cm]
M, (GeV)
[Bhattacharya, et al. (2015), Gupta, et al. (2018)]
Status:
* g;,d,s

results from multiple collaborations with control over a — 0 extrapolation
e Single result from ETM 19 g% = —0.00024(16)
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Neutron EDM from QCD 6-term

LI585 = 329;2 0GG dim=4 QCD 0-term
— 5 > dyg(o- F)ysq  dim=>5 Quark EDM (qEDM)
q=u,d,s
— é Z (iqgsﬁ(o - G)y5q dim=5 Quark Chromo EDM (CEDM)
g=u,d,s
+ du,g—fGGG dim=6 Weinberg’s 3g operator
+ Z C; o) 4(1 dim=6 Four-quark operators
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QCD #-term

GG
, 4
S = Socp +i0Q, Q= /d oo

At the leading order, the correlation functions calculated are

JEM / Ao GGl
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Three different approaches for the QCD 6-term

— External electric field method: (NN)(E,t) = (N(t)N(0)e?) #
Aoki and Gocksch (1989), Aoki, Gocksch, Manohar, and Sharpe (1990),
CP-PACS Collaboration (2006), Abramczyk, et al. (2017)

— Simulation with imaginary 6: 0=1i0, S=05"1" 5" Gysq

2ms+my

Horsley, et al., (2008), Guo, et al. (2015)

— Expansion in small 6: 1 ,
O = [ dV.a.q0()eSec0=1

= (O(x))9=0 — i0{O(2)Q)e=0 + O(67)

Shintani, et al., (2005); Berruto, et al., (2006); Shindler et al. (2015);
Shintani, et al. (2016); Alexandrou et al., (2016)

Abramczyk, et al. (2017)

Dragos, et al. (2019); Alexandrou, et al. (2020); Bhattacharya, et al. (2021)
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The form factor eF5(0) = 2Myde

In simulations with ‘imaginary 6’ and ‘expansion in 6’ we extract F5(0) from the most
general decomposition:

(N, s') | M I N(p,s)gp = un(,s) | 7uFi(q?)

2]\14 U;WQV(FQ( )—iF3(q2)’75>

Fa(q?)

+MJ2V

(dau — )5 [un(p,s)

F3 in the naive decomposition is not the correct CP-odd form factor

The neutron state aquires a phase a which mixes F; and F3 in “standard” approach
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Phase o with P and CP violation and impact on Fj

The most general spectral decomposition of the 2-point nucleon correlator is
(QTN(p,7)N(p,0)[Q) =Y e HT A" A MF,
%,8
, —ip + M;) ., . ) . -
Z ./\/l‘is = '™i5 (%EP Z) e’ — i Z u3\7 (p, s)ﬂﬁv(p7 S)ew‘" 5
s 7

S

With CPV
® ~, is no longer the parity operator for the neutron state
¢ There is a unique « for each state and each CPV interaction
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Calculations of the ©-term pre 2017

Abramczyk, et al. clarified the issue of a« = previous lattice give d,, ~ 0

4 :
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Recent calculations with the ©-term

Neutron, d,(a,m,) Fit
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[Dragos, et al. (2019)]:

e multiple a but large pion mass m, > 400MeV
® d,=—-152(T1)x 103 fe- fm
¢ Inflection point occurs near smallest M to satisfy d, =0 at M, =0
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Does the N7 excited state contribute

Bhattacharya et al. (2021) perform a xPT analysis:
= Contribution of low energy N= excited-state should grow as M, — 135 MeV

Q

e & %
| § g |
| § § |

Kok p°,.0

Including the N state gives a very different value for ground-state matrix element
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Status from Bhattacharya et al. (2021)

Neutron
Oe-fm

Proton
Oe-fm

Bhattacharya 2021
Bhattacharya 2021 with N
ETMC 2020

Dragos 2019

dn, = —0.003(7)(20)
d, = —0.028(18)(54)
|d,,| = 0.0009(24)

d,, = —0.00152(71)

d, = 0.024(10)(30)
d, = 0.068(25)(120)

d, = 0.0011(10)

d, ~ 0.001 -

Syritsyn 2019

Table: Summary of lattice results for the contribution of the ©-term
to the neutron and proton electric dipole moment.

e No reliable estimate of the contribution of the ©®-term to nEDM

¢ Including the contribution of the lowest energy N7 excited state gives a much
larger result
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QCD 6#-term future: All lattice systematics need better control

a06m310

=209 o /87F =0.76 fm

0 200 400 600 800 1000
Configurations

Simulations at M, = 135 MeV

Check for long autocorrelations in @, which increase as a — 0

High statistics needed

Resolving the contribution of N7 excited state

Simulations on small « lattices required to reduce discretization artifact
Chiral-continuum fits

New algorithms needed for lattice generation at a < 0.6 fm to get high statistics
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Neutron EDM from
quark Chromo-EDM (CEDM)

i 3;15 0GG dim=4 QCD f-term
. .

- % 3" dyglo- F)ysg  dim=5 Quark EDM (qEDM)
q=u,d,s

- % 3" dygsa(o - G)ysq dim=5 Quark Chromo EDM (CEDM)
q=u,d,s

+ dw%GéG dim=6 Weinberg’s 3g operator

+ Z C’,Gq)(')fﬁm dim=6 Four-quark operators

(2
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Lattice QCD approaches for CEDM

S = Sqcp + SceEpwm; SceEpM = % Z Jq/d4xq(a -Gysq

q:u7d7s

¢ Three different approaches developed

— Schwinger source method [Bhattacharya, et al. (2016)]:

1
Dclov — Dclov + §€U#V'YSGIJ«V

— Direct 4-point method with expansion in >° Ocrepwm [Abramezyk, et al. (2017)]:

<NV,U,N>CEDM = <NVMN> + Jq<NVuNZ OCEDM> + O(Jg)

q

— External electric field method [Abramczyk, et al. (2017)]:

—

(NN)cepm(€E,t) = (N(t)N(0)Ocepm) g
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Signal in F3

9 ‘ ‘ — ‘ — 20 ‘ ‘ — ‘ ‘ ‘
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w ’r w 16|
:\ 6 "3\ 14
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® These data are without renormalization

- RI-MOM scheme result for CEDM with 1-loop conversion factors to MS available
- Divergent mixing with pseudoscalar operator: ngE”DM = Ocepm — Aa—2P
[Bhattacharya, et al. (2015), Constantinou, et al.(2015)]

e Working on understanding the behavior versus Q* and M2
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Operator Mixing O, = Ocepm — Aa™2P

0.610 [
0608 [ & &1 T V;\ &7
0.606 |- A B A S
0604 |

0.602 |-
0.600 |-
0598 |
0.596 : : : ‘ ‘ ‘
2 4 6 8 10 12 14

t

CnC / CnP

¢ Determining the mixing coefficient A to define the subtracted operator
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Renormalization using Gradient Flow

Gradient flow [Lischer and Weisz (2011)]:

0B, (t) = D,Gyy, Bu(z,t =0) = A,(x),
Orx(t) = A%, x(x,t = 0) = ¢(x)

Smear (flow) gluon and quark fields along the gradient of an action to a fixed
physical size (sets ultraviolet cutoff of the theory)

The flowed operators have finite matrix elements except for an universal Z,,
— Allow us to take continuum limit without power-divergent subtractions

Mixing and connection to MS: simpler perturbative calculation in continuum
Calculations for CPV ops underway [Rizik, Monahan, and Shindler (2020)]
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CEDM: Future Prospects

e Working on renormalization and operator mixing using the gradient flow scheme

e Need algorithm developments for large scale simulations at physical pion mass
and lattice spacing a < 0.09 fm

¢ |nvestigating machine learning methods to reduce computational cost
[Yoon, Bhattacharya, and Gupta (2019)]
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Neutron EDM from
Weinberg’s ggg and Various Four-quark Ops

i 3;’5 0GG dim=4 QCD f-term
T
- % 3" dya(o - F)ysq  dim=5 Quark EDM (qEDM)
q=u,d,s

- % 3" dygsa(o - G)ysq dim=5 Quark Chromo EDM (CEDM)

q=u,d,s
+ dw%sG@G dim=6 Weinberg’s 3g operator
+ Z 07;(4(1) O§4q) dim=6 Four-quark operators

28/35



Weinberg’s GG Operator: Status and Future Prospects

Lw,,, = édwgSGGG

Calculation is almost the same as for the QCD §-term

No publications yet, only a few preliminary studies
[Yoon, Bhattacharya, Cirigliano, and Gupta (2019)]

Signal is noisier than QCD 6#-term

Suffers from the long autocorrelations on a < 0.06 fm lattices

Requires solving operator renormalization and mixing

- RI-MOM scheme and its perturbative conversion to MS is available
[Cirigliano, Mereghetti, and Stoffer (2020)]
- Gradient flow scheme is being investigated to address divergent mixing structure
[Rizik, Monahan, and Shindler (2020)]
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Weinberg’s GGG Operator: Mixing with the ©-term
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Variance reduction by integrating GGG over a local volume

Motivation: correlation between GG or GGG and (NJEMN) expected to be
short range. Region outside contributes only noise (Shintani, Liu, .. .)

25 1/2

[Btyel 2 = 034 fm | | |
- . :{3

5 F a09m130 = |
I a09m220 ~e-
0 , a09m310 ==~
0 0 10 20 30 40 50
7AfQ RT

Ensuring that the “safe” volume is large enough to not give rise to a bias.
On current lattices, safe region approaches the full volume as M, — 135 MeV
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Four-quark operators: Current Status and Future Prospects

Lig = 3 C5P (W) Byivsty) + -

¢ No lattice QCD calculations yet!
¢ Calculation expected to be statistically noisy and computationally expensive
¢ Hopefully we can include this calculation in a long range (5—-10) year plan
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Lattice Calculations for g, yn
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g-nn: Current Status and Future Prospects

Cfﬁ]‘(, = —;TONT -wN — ;TIWONN— 29?277'0]\77'3]\74-“-

e Chiral symmetry relations + nucleon o-term & mass splittings — g.vn
[Vries, Mereghetti, Seng, and Walker-Loud (2017)]

e No direct lattice calculation of g,xxn published yet

Can be calculated from (N|A,(¢)|N)cpv following the same
methodology used for neutron EDM via (N|V,(q)|N)cpv
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Conclusion

e Significant progress, issues of signal, statistics and renormalization remain

Gradient flow scheme is, so far, best for renormalization

e quark-EDM: Lattice QCD has provided results with < 5% uncertainty

e O-term: Significant Progress. No reliable estimates yet
® Statistics
® Does N provide leading excited-state contamination?

e quark chromo-EDM: Signal in both methods
® Renormalization and mixing (Working on gradient flow scheme)
® Does N provide leading excited-state contamination?

e Weinberg GGG Operator: Signal
® Address the mixing with ©-term in gradient flow scheme

e Four-quark operators: Yet to be initiated

Could use 10x Larger Computational Resources
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