The Cryogenic Storage Ring CSR

Manfred Grieser

Max Planck Institute for Nuclear Physics

744. Wilhelm and Else Heraeus seminar Towards Storage Ring Electric Dipole Moment Measurements 29th-31th March 2021

Purpose of the CSR

to get all molecular ions in the same molecular quantum state ($\nu=0$, J=0) the molecular ions have to be stored at T<10 K

 \Rightarrow a new Cryogenic Storage Ring (CSR) at MPIK Heidelberg

in opposite to other storage rings it is an electrostatic storage ring

Overview of the CSR

injection

circumference: 35.12 mbeam energy: $(20-300) \cdot \text{q}$ keV temperature: 10-300 Kresidual gas densities: (at $\overline{T} \approx 10 \text{ K}$): <100 molecules/cm³

with electron cooling m/q range: 1 - 160(at E/Q=300 kV) lowest rigidity: p^+ , H⁻ at E/Q= 20 kV Bp=0.02 Tm

Electrostatic beam optics Elements

- 4-fold symmetric storage ring all CSR corner sections identical
- 8 pairs of **quadrupoles** ($\pm 10 \text{ kV}$, $\varnothing = 100 \text{mm}$)
- 8 6°- electrostatic deflector (±30 kV, g=120mm)
- 8 **39°-electrostatic deflector** (±30 kV, g=60mm)
- 8 vertical electrostatic deflectors

39⁰ cylindrical deflector

electrostatic quadrupoles with vertical steerer

Electrostatic Quadrupole of the CSR

Cryostat of the CSR

isolation vacuum ca. 10⁻⁶ mbar

isolation vacuum chamber

at cryogenic conditions n≤100 molecules/cm³

CSR main injector

CSR main injector: ion source on a high voltage platform: ±300 kV

Single Turn injection

The diagnosis section

Most of the diagnosis elements are located at the diagnosis section

injection

The current and Schottky pick-up

Current pick-up

-used to measure the **absolute number** of the injected ion number (pulsed beam) -sensitivity 10⁶ singly charged ions measured current signal of

Schottky noise spectrum

12

Lifetime Measurements of a stored Co₂⁻ beam with Schottky noise analysis

longest measured life time in the CSR: Ag_2^- : $\tau = 2500 \text{ s} \text{ E} = 60 \text{ keV}$

13

Beam Position Monitor (BPM)

Calculated CSR lattice of the standard mode

-most experiments at the CSR are carried out with the standard mode Standard mode of the CSR with super-periodicity 4

Horizontal and vertical betatron Calculated dispersion function of functions β_x and β_y of the CSR the standard mode standard mode ($Q_x, Q_y \approx 2.6$) ╙╉╴╋╋╴╏╨┈╴ ╨╢╴┫┫╴╢╨ CSR Test calculation Win32 version 8.51/15 01/02/19 11.27.07 14 2.2 $D_{x}(m)$ D ßx 12 2.0 Betatron function (m) 1.8 10 1.6 8 1.4 6 1.2 4 1.0 2 0.8 0 -0.0 15. 20. 25. 30. 35. 10. 5. 40. 30 15 20 25 10 35 0 5 Longitudinal position s (m) s (m)

small horizontal beam size in the deflectors

Mass measurements in an electrostatic storage ring

The revolution frequency f depends on the ion mass m and injection energy E (non relativistic case):

$$\frac{\Delta f}{f} = \frac{1}{2} \frac{\Delta(m/Q)}{(m/Q)} + \underbrace{0}_{2} \frac{\Delta(E/Q)}{E/Q} \qquad E = \frac{1}{2} m \cdot v(s)^{2} + Q \cdot \phi(s)$$

$$\eta = 1 - 2 \cdot \alpha_{p} \longleftarrow \qquad \text{in opposite to magnetic storage rings there is an factor 2 in the } \eta - \alpha_{p} \text{-relation}$$

$$\eta = \frac{\Delta f/f}{\Delta p/p} \qquad \alpha_{p} = \frac{\Delta C/C}{\Delta p/p} = \frac{\oint \frac{D_{x}(s)}{\rho(s)} ds}{C}$$

 $\Delta p/p$ – momentum deviation of injected ion beam

For mass measurements the storage ring has to be operated in an **<u>isochronous mode</u>** with:

$$\eta = 1 - 2 \cdot \alpha_{p} = 0$$

Isochronous mode for ion mass measurements

Typically slip factor used at the mass measurements

Measurement of the slip factor determined with ⁶³Cu⁻ ions (E=250 keV)

Stability of the measured revolution frequency

If
$$\eta = \frac{\Delta f/f}{\Delta p/p} \approx 0$$
 injected pulse length can be keep for seconds

 \Rightarrow easily to detect the stored ion beam my measuring the coherent spectrum.

15 hours 0.75 Measured – average frequency (Hz) 0.50 0.25 0.00 -0.25 -0.50 Ŧ h=`/ -0.75 Average frequency = 271.1753 (kHz) -1.00200 400 600 800 0 Time (min)

ripple period $T_r \approx 100$ minutes Assumption: air condition of the power supplies is causing this period frequency stability measured over 15 hours: $\Delta f/f=1$ Hz/271175.5 Hz =3.6 10⁻⁶ frequency is caused by the stability of the deflector power supplies. A change of all ring potential ϕ is changing the revolution frequency by: $\frac{\Delta f}{f} = \alpha_p \frac{\Delta \phi}{\phi}$ with $\alpha_p = 0.5$ This means we get for the 15 hours stability $\Delta U/U$ of the deflector

power supplies (with DAC):

$$\frac{\Delta U}{U} \! < \! \frac{1}{0.5} \! 3.6 \! \cdot \! 10^{-6} = 7 \! \cdot \! 10^{-6}$$

19

19

Mass measurements at the CSR

Reference beam: $C_2^$ $m_{ref}=24.000548 \text{ u}$

File = D:\Auswertung\2020\November\30\A24_001.DAT
Kanal = 1
Marker1 = 282257. Hz Marker2 = 282273. Hz \u03c4 = 16.3 Hz

Mathematica Skript = D:\Mathematica\FSV\Frequenz Bestimmung\FSV_

unknown ion with A=26

File = \\149.217.27.145\Daten\Auswertung\2020\November\30\A26.DAT Kanal = 1 Marker1 = 271208. Hz Marker2 = 271145. Hz ⊥f = -63. Hz

Mathematica Skript = D:\Mathematica\FSV\FSV_Spektrum_mit_Gauss_Rechterkf

with m_{ref}=24.000548 f_{ref}=282264/7 Hz f=271175/7 Hz

and

we get m=26.0035 u

negativ	e molecule	mass
	C12-N:	26.0036
	C13-C13:	26.0073
	С12-С13-Н:	26.0117
	C12-C12-D:	26.0147
	Н-С12-С12-Н:	26.0162
\Rightarrow molecule is CN ⁻		
mass resolution		
$\frac{\Delta m}{2} < 3.8 \cdot 10^{-6}$		

m

Mass spectrum of isobars with A=17

CSR achromatic mode for electron cooling

Stability range of electron cooling

$$-\frac{8\mathrm{E}_{\mathrm{e}}\varepsilon_{0}}{\mathrm{D}_{\mathrm{x}}\mathrm{e}^{2}\mathrm{n}_{\mathrm{e}}}\frac{\Delta_{\mathrm{x},0}}{\Delta_{\parallel,0}}\mathrm{f}_{\mathrm{b}} < \mathrm{x}_{0} < \frac{4\mathrm{E}_{\mathrm{e}}\varepsilon_{0}}{\mathrm{D}_{\mathrm{x}}\mathrm{e}^{2}\mathrm{n}_{\mathrm{e}}}$$

 x_0 -horizontal displacement of the ion beam in the electron cooler

To suppress dispersive heating effects $D_x \rightarrow 0$ m (ECOOL section)

experiments:

attained dispersion D_x in the cooler D_x =-0.03-0.03 m

The CSR electron cooler

Magnets of the CSR electron cooler

toroid magnet

steering copper coil pairs located inside aluminum body for toroidal drift compensation

iron shield

high temperature superconductor

cooling solenoid

High-temperature superconductor attached onto cooled copper strips distributes ≈ 60 A currents to the magnets

CSR electron cooling

25

Dissociative Recombination in the cryogenic storage ring

schema

Science

Quantum-state-selective electron recombination studies suggest enhanced abundance of primordial HeH $^{\rm +}$

Oldrich Novotný, Patrick Wilhelm, Daniel Paul, Ábel Kálosi, Sunny Saurabh, Arno Becker, Klaus Blaum, Sebastian George, Jürgen Göck, Manfred Grieser, Florian Grussie, Robert von Hahn, Claude Krantz, Holger Kreckel, Christian Meyer, Preeti M. Mishra, Damian Muell, Felix Nuesslein, Dmitry A. Orlov, Marius Rimmler, Viviane C. Schmidt, Andrey Shornikov, Aleksandr S. Terekhov, Stephen Vogel, Daniel Zajfman and Andreas Wolf

Science 365 (6454), 676-679. DOI: 10.1126/science.aax5921originally published online July 18, 2019

Merged beam experiments

Thanks for your attention!

A. Becker K. Blaum C. Breitenfeldt F. Fellenberger S. George J. Göck M. Grieser F. Grussie R. von Hahn P. Herwig J. Karthein

C. Krantz H. Kreckel S. Kumar S. M. Lange J. Lion S. Lohmann C. Meyer P. M. Mishra O. Novotný P. O'Connor D. Paul R. Repnow

S. Saurabh S. Schippers V. Schmidt C. D. Schröter D. Schwalm L. Schweikhard K. Spruck X. Urbain JUSTUS-LIEBIG-S. Vogel P. Wilhelm A. Wolf D. Zajfman

UNIVERSITAT GIESSEN

28