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Purpose of the CSR

Boltzmann distribution of the 
rotational quantum states

T=300 K 

n=1
n=0

n=2
n=3
n=4

after production
in the ion source

after some 
second  
storage time

rotational quantum state n=0

T < 10 K 

n=0 , J=0

quantum state of all stored
molecules after 10-1000s 
storage  time: n=0, J=0

to get all molecular ions in the same molecular quantum state (n=0, J=0)  the  molecular ions  
have to be stored  at  T<10 K 
 a new Cryogenic Storage Ring (CSR) at MPIK Heidelberg 

in opposite to  other storage rings it is an electrostatic storage ring

vibration quantum state

main research field: molecular ion physics
goal: all molecular ions to have in the same n=0, J=0 quantum state   

J=1
J=2
J=3

J=4

J=5
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Overview of the CSR 

experimental 
section

circumference: 35.12 m
beam energy: (20-300)·q  keV
temperature:      10-300 K
residual gas densities:   
(at  10 K): <100 molecules/cm3

with electron cooling
m/q range: 1 -160

(at E/Q=300 kV)
lowest rigidity: p+, H- at E/Q= 20 kV

Br=0.02 Tm

electrostatic 
deflectors

RF/ injection
and
experimental
section electron cooler

phase space cooling
up to 160 u/e

fully cryogenic 
(10 K) beam line

diagnostic 
section

injection
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electrostatic
quadrupole duplet



Electrostatic beam optics Elements

electrostatic quadrupoles with vertical steerer
390 cylindrical deflector

4-fold symmetric storage ring
all CSR corner sections identical

8  pairs of quadrupoles (±10 kV,  =100mm)

8  6°- electrostatic deflector (±30 kV, g=120mm)

8  39°-electrostatic deflector (±30 kV, g=60mm)

8  vertical electrostatic deflectors

electrostatic quadrupoles

39° deflector

6° deflector
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maximum field 1 MV/m

electrode made by aluminum
with gold coating

electrode made by aluminumwith gold coating



Electrostatic Quadrupole of the CSR

quadrupole
electrode

10 cm

inner vacuum
chamber

maximum electrode voltage: Umax=±10kV

hyperbolic 
shape

quadrupole
electrode

Relative deviation of the field gradient in
the CSR focusing quadrupole. l0=200 mm

usable quadrupole aperture

5

aperture: ± 5cm
dynamical aperture: ± 4 cm  



Cryostat of the CSR

40 K shield80 K shield

inner vacuum chamber

isolation 
vacuum chamber

quadrupole

isolation vacuum
ca. 10-6 mbar

40 K shield
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100 mm

n100 molecules/cm3
at cryogenic conditions



CSR main injector
CSR main injector:  ion source on a high voltage platform: ±300 kV

± 60 kV platform with
positive and negative
ion sources

CSR
CSR
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±300 kV ±60 kV

high voltage platform

ion source

separation
magnet

acceleration tube



Single Turn injection 

injector 
beam

60 deflector
fast voltage switching

voltage 60 deflector

injector pulse

circulating current

2

T
T 0

i 

T0-revolution time
Ti-injector beam pulse length

(example)
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position pick-up A
horizontal and vertical

position pickup B, horizontal and vertical
current pick-up

Schottky pick-up

ion beam

The diagnosis section

beam 
profiler

diagnosis
section

injection
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Most of the diagnosis elements are located at the diagnosis section 



The current and Schottky pick-up

Schottky 
pick-up

current
pick-up

current pick-up
used to determine the absolute
injected  ion number
Schottky pick-up 
used to measure revolution 
frequency and momentum spread

tube:
L= 3.0 cm
 =10 cm
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tube:
L= 34 cm
 =10 cm



Current pick-up
-used to measure the absolute number of the injected ion number  (pulsed beam) 
-sensitivity 106 singly charged ions
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measured current signal of 
an 40Ar+ ions (E= 60 keV) 

injected ion pulse stored ion pulse

tube: =10 cm, L=3.0 cm
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integration over one pulse

Dt

T0- revolution time
pulse length Dt  is set up with an chopper
located in the transfer line to the CSR

Xu- signal 
amplification
L- pick-up length
v-velocity
C- capacity

T0

N=6107 measurement

simulation
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f = hf0 = 20·f0

Schottky noise spectrum
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Schottky
pick-up

slip factor
CSR standard
mode

Time development  of  the Schottky noise
spectrum  (60 keV Co2

-
ions) 
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(non relativistic
approach)



fit = 660 s
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time after injection (s)

time after injection (s)

Dp/p=1.110-3

Dp/p=1.510-3

Lifetime Measurements  of a stored Co2
- beam 

with Schottky noise analysis 

due to noise on 
the electrodes
increasing
of Dp/p 
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N=108

N=1.8107

observation
frequency:   

f = hf0 = 20·f0

13longest measured life time in the CSR:  
-
2Ag : τ=2500s E=60keV



Beam Position Monitor (BPM)

beam position
monitor(BPM)

CSR has 6 horizontal and 
6 vertical position pick ups (BPM)

pick up 
chamber

quadrupole 
chamber

U2

diagonal slit

U1tube divided in 
two parts

Ui - influenced
signal
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Calculated CSR lattice of the standard mode 

Horizontal and vertical betatron
functions ßx and ßy of the CSR
standard mode  (Qx,Qy 2.6)

small horizontal beam size in the deflectors

-most experiments at the CSR are carried out with the standard mode
Standard mode of the CSR with super-periodicity 4
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Calculated dispersion function of
the standard mode



p

Δf 1 Δ(m/Q) η Δ(E/Q)
=- +

f 2 (m/Q) 2 E/Q

η=1-2 α





Mass measurements in an electrostatic storage ring
The revolution frequency f depends on the ion mass m and injection energy E 
(non relativistic case):

in opposite to magnetic storage rings there is an
factor 2 in the  ap-relation 
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ap -momentum compaction factor

For mass measurements the storage ring has to be operated in an isochronous mode
with: 

pη 1 α 02=   =

Δf/f
η

Δp/p
=

x

p

D (s)
ds

ΔC/C ρ(s)
α =

Δp/p C
=


- slip factor

slip factor
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E= m v(s) Q ( )
2

s  

ion energy

Dp/p – momentum deviation of injected ion beam



Isochronous mode for ion mass measurements

p

Δf/f
η= =1-2 α 0

Δp/p
 =

slip factor  isochronous
condition

injection ECOOL diagnosis

x

p

D (s)
ds

ΔC/C 1ρ(s)
α =

Δp/p C 2
= =


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Typically slip factor used at the mass measurements

scaling factor of
all potentials 

Measurement of the slip factor determined with 63Cu- ions (E=250 keV)

h=7
p

0

p

p 2
tr

f

f

C / C

p / p

f / f 1
1 2 1

p / p

D D
= a



D
a =

D
D

 = =  a = 
D 

ap- momentum
compaction

 - slip factor
tr – tr parameter

tr=0.9976
ap = 0.5023
=-0.004682

f=h∙f0

f0- revolution frequency
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z

frequency stability measured 
over 15 hours:
Df/f=1 Hz/271175.5 Hz =3.6 10-6

15 hours

frequency is caused by the stability of
the deflector power supplies. A change 
of all ring potential  is changing
the revolution frequency by: 

p p 5w t
f

0.h
f

i
D D

= a a =


This means we get for the 15 hours 
stability DU/U of the deflector 
power supplies  (with DAC):

6 6ΔU 1
3.6 10 7 10

U 0.5
   = ripple period Tr  100 minutes

Assumption: air condition of the power supplies
is causing this period

Tr

Stability of the measured revolution frequency

h=7
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If  injected pulse length can be keep for seconds

easily to detect the stored ion beam my measuring the coherent spectrum.

Δf/f
η 0

Δp/p
= 



Mass measurements at the CSR
Reference beam: C2

-

mref=24.000548 u unknown ion with  A=26

2
ref

ref 2

f
m=m

f

with
mref=24.000548
fref=282264/7 Hz
f=271175/7 Hz
and

we get
m=26.0035 u

 molecule is CN-

h=7
h=7

negative

mass resolution

6Δm
3.8 10

m
 
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Mass spectrum of isobars with A=17

NH3
+

OH+

pre-
amplifier

main
amplifier

tube: =10 cm, 
current PU:  L=3 cm
Schottky PU: L=34 cm

spectrum-analyzer

p

Δf 1 Δ(m/Q) η Δ(E/Q)
=- +

f 2 (m/Q) 2 E/Q

η=1-2 α 0



  (isochronous mode)

NH3
+:

m = 17.026 u
OH+:
m =17.00219 u



CSR achromatic mode for electron cooling
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ECOOL

ECOOL

To suppress dispersive heating effects
Dx 0 m (ECOOL section)

experiments:
attained dispersion Dx in the cooler
Dx=-0.03-0.03 m

x,0e 0 e 0
b2 2

e ||,0 e
0

x x

8E ε 4E ε
f

e n e nD
x

D

D
  

D

Stability range of electron cooling

x0-horizontal displacement of the ion
beam in the electron cooler 

4 quadrupole families



The CSR electron cooler

GaAs 
photo-
cathode

collector

HV platform

HTS coil-cooling 
system

electronsions
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Magnets of the CSR electron cooler

toroid magnet
steering copper coil pairs located 
inside aluminum body for 
toroidal drift compensation

cooling solenoid
High-temperature superconductor 
attached onto cooled copper strips 
distributes 60 A currents to the 
magnets

high temperature superconductor

iron shield
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CSR electron cooling
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CSR Cooler s x
(m

m
)

t (s)

horizontal electron cooling 

ion beam: 250 keV HeH+

I =311 nA
electrons: Ee= 27.43 eV

Ie=26 mA
ne=3.7105 cm-3

a=20

cooling time
x=1.3 s

gun
with photo
cathode

collector

Longitudinal electron cooling of HeH+

fit including IBS

 ||,0 = 1.42 s 

t (s)

ECOOL on

ECOOL
on

s |
|(s

)
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Dissociative Recombination in the cryogenic storage ring

schema

DR spectrum for rotationally cold HeH+



ion source
up to E=q60 keV

stored ions

el
ec

tr
on

co
ol

in
g

ion source up to 
E=q300 keV

photo-detachment

interaction region

detector 

neutral beam

Merged beam experiments

Independent 
Research  Group 
of H. Kreckel
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spectrometer
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