

Fast integration program for spin tracking

Martin Gaisser

Straight Forward Integrators Up To Now

- 4th order Runge-Kutta (Selcuk)
- 5th order Predictor-Corrector (Yannis)

Both are:

- Accurate for short times
- Slow
- Not very flexible
- Expressed in cartesian lab-frame coordinates
- Hard to parallelize (well)
- Written in old style/language

=> decide to write a new code in C++

* http://arxiv.org/abs/1503.02247

Goals For New Development

New code should be:

- Fast
- Parallel, possibly on GPUs
- Very accurate
- Flexible
- Able to use different integration algorithms
- Able to give indications about precision
- Able to track particles in 3 dimensional lattices

Design Decisions

Use:

- Boost library, especially package odeint (different integrators)
- VexCL* for parallelizing code on CPUs/GPUs
- ROOT and/or Gnuplot for postprocessing
- Curvilinear coordinate system with s as independent parameter
- Easy to extend modular design with fixed interfaces
- Virtual constructors to select different models at runtime

* Vector **EX**pression template library for Open**CL**/CUDA, https://github.com/ddemidov/vexcl, http://arxiv.org/abs/1212.6326

Modular Design

Current Status

Center for Axion and Precision Physics Research

- Complete framework is available
- Only a few submodels are implemented
- Program is currently only serial
- First benchmarking done for electric/magnetic rings with/without rf
- Program is much faster than old Runge-Kutta integrator
- Can deal with 3D lattices
- Can use arbitrary precision numbers
- Can output to text- or ROOT-file

Data type	Significant digits	Runtime/s
double	15	2.06
long double	18	2.35
float128	34	9.84
mpfr<15>	15	25.39
mpfr<18>	18	22.51
mpfr<30>	30	23.56
mpfr<40>	40	24.65
mpfr<50>	50	27.49
mpfr<100>	100	28.55
mpfr<1000>	1000	433.25

Lattice: 3D electric, Runge-Kutta 4, dt=10⁻⁸s, T=1ms

- All benchmarking is done with **Bulirsch-Stoer algorithm** at required relative and absolute accuracies of 10⁻⁸ (10⁻¹⁰ with rf cavity)
- Data type: long double

Pitch Effect: Small correction C of spin precession frequency due to vertical pitch, $\omega = \omega_a(1 - C)$

Without focusing: ω is matched to the 10⁻¹¹ level, same accuracy as frequency fit

With focusing: ω is matched to the 10⁻¹⁰ level, frequency is still determined to the 10⁻¹¹ level

- \rightarrow analytic formula also makes approximations
- → can express analytic results in terms of tune → tune is correct to at least 10^{-10} level

All-electric ring, ideal particle but with vertical pitch, no focusing, expect:

All-electric ring, ideal particle with vertical pitch, weak focusing expect:

→ rf results not that great, probably because of extended cavity and slow oscillations

Martin Gaisser

Center for Axion and Precision Physics Research

Some (not surprising) Observations

- Errors due to machine accuracy can be cut by higher precision numbers, algorithm errors and simplification errors remain
- Algorithm errors can be cut by using shorter time steps

 Precision needs time!
- Time step seems to be limited by oscillation frequencies, **dt should be much smaller than shortest oscillation period**
- Magnitude of spin is not conserved during simulation → loss rate can be good accuracy measure
- Total energy is conserved due to formulation of the problem, ratio of potential energy to kinetic energy changes over time, i.e. radial drift is observed instead of energy loss due to nonsymplectic algorithms

Plans For Future

• Parallelize!

- Calculate beam parameters from many particle simulations
- Implement new submodels, i.e. new beamline elements, etc
- Possibly use Hamiltonian approach together with new geometric integrators in order to respect evolution on Lie groups
- Use the program!