

May 3-8, 2015 Richmond, VA, USA

**Topical meeting of Spin Tracking for Precision Measurements** 

# Overview of Spin Coherence Time study results at COSY

<u>Greta Guidoboni</u> University of Ferrara and INFN

On behalf of the JEDI Collaboration

# How to measure the EDM of a charged particle

### **Electric Dipole Moment (EDM)**

- charge displacement within the particle volume
- Lies along the spin axis

**Proposed solution: - Storage ring** 

- Keep spin aligned with velocity



$$\frac{d\vec{s}}{dt} = \vec{d} \times \vec{E}$$
 EDM signal = spin precession  
in the vertical plane

Magnetic ring has inward electric field in particle frame

# How to measure the EDM of a charged particle

### **Electric Dipole Moment (EDM)**

- charge displacement within the particle volume
- Lies along the spin axis



Proposed solution: - Storage ring - Keep spin aligned with velocity

 $\frac{d\vec{s}}{dt} = \vec{d} \times \vec{E}$ 

EDM signal = spin precession in the vertical plane

Magnetic ring has inward electric field in particle frame

Anomalous magnetic moment causes spin to precess different than velocity



# How to measure the EDM of a charged particle

### **Electric Dipole Moment (EDM)**

- charge displacement within the particle volume
- Lies along the spin axis



Proposed solution: - Storage ring - Keep spin aligned with velocity

 $\frac{d\vec{s}}{dt} = \vec{d} \times \vec{E}$ 

EDM signal = spin precession in the vertical plane

Magnetic ring has inward electric field in particle frame

Anomalous magnetic moment causes spin to precess different than velocity







Spins aligned

After some time: Particles have different velocities Spins out of phase in the horizontal plane





### Minimum SCT?

Deuterons, assuming an EDM  $d\approx 10^{-29} \text{ e-cm}$ Possible ring:  $B_{lab}=0,42T E_{lab}=17MV/m p=1,5 \text{ GeV/c}$ Minimum detectable angle  $\theta\approx 10^{-6} \text{ rad}$ 





# **Spin Coherence Time: STUDIES**

### 1) AIM

Demonstrate sextupole fields can counteract the spread of spin tunes associated with emittance and  $(\Delta p/p)^2$  of a deuteron beam. Second order effects!

In combination with beam preparation based on

- eCooling to shrink transverse and longitudinal beam size
- **Bunching** to <u>remove first order Δp/p contribution</u>

# **Spin Coherence Time: STUDIES**

### 1) AIM

Demonstrate **sextupole fields** can counteract the spread of spin tunes associated with **emittance** and  $(\Delta p/p)^2$  of a **deuteron** beam.

Second order effects!

In combination with beam preparation based on

- eCooling to shrink transverse and longitudinal beam size
- **Bunching** to <u>remove first order Δp/p contribution</u>









plane by the RF-solenoid





# 4) Run Summaries

 $\theta_x$  = horizontal emittance  $\xi$  = chromaticity

|                         | May 2012                                             | Feb 2013                                            | Aug 13                                                                                                                                | Aug 14                                                                                                                                                  |
|-------------------------|------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| ВСТ                     | 6·10 <sup>8</sup>                                    | 2·10 <sup>9</sup>                                   | 1.10 <sup>9</sup>                                                                                                                     | 1.10 <sup>9</sup>                                                                                                                                       |
| Target                  | Tube                                                 | Tube                                                | Ridge                                                                                                                                 | Flat                                                                                                                                                    |
| Extraction              | Ramped                                               | Ramped                                              | Ramped/<br>White noise                                                                                                                | White noise                                                                                                                                             |
| Large Hor.<br>Emittance | Yes                                                  | Yes                                                 | Yes                                                                                                                                   | Yes                                                                                                                                                     |
| Large<br>DeltaP/P       | No                                                   | No                                                  | Yes                                                                                                                                   | Yes                                                                                                                                                     |
| Aim                     | Correction for $\theta_x$<br>with sextupole<br>(MXS) | - Correction for $\theta_x$<br>- $\xi$ measurements | - Correction for $\theta_x$<br>and $(\Delta p/p)^2$ with<br>sextupoles.<br>(2-D map MXS-<br>MXG)<br>- $\xi$ =0 close to<br>each other | <ul> <li>Correction for θ<sub>x</sub><br/>and (Δp/p)<sup>2</sup> with<br/>sextupoles.</li> <li>(2-D map MXS-<br/>MXG)</li> <li>- ξ=0 overlap</li> </ul> |
| Comments                | Proved!                                              | 50 Hz=Rate effect                                   | Huge set of data                                                                                                                      | Huge set of data                                                                                                                                        |
|                         |                                                      | ξ=0 sextupole settings changed                      |                                                                                                                                       |                                                                                                                                                         |

# **Results: MAY 2012**

Sextupole field corrections for horizontal emittance



# Results: MAY 2012

Sextupole field corrections for <u>horizontal emittance</u>



 $A + a K_2 | \theta_x$ SC

Sextupole field Beam profile width

### Various horizontal profiles $\theta_{v}$

- Flip **SCT** sign above zero crossing
- **Different slopes** •
- SCT does not go to infinity.

Point near zero may be above or below the line due to other contributions.

 The same zero crossing, independent of beam width

MXL=MXG=0 m<sup>-3</sup>

# Results: MAY 2012

Sextupole field corrections for horizontal emittance





Sextupole field Beam profile width

### Various horizontal profiles $\theta_x$

- Flip **SCT** sign above zero crossing
- Different slopes
- **SCT** does not go to infinity.

Point near zero may be above or below the line due to other contributions.

• The **same zero crossing**, independent of beam width

Sextupole fields can be used to increase SCT



2D map of sextupole field corrections for <u>horizontal emittance</u> and  $(\Delta p/p)^2$ \_\_\_\_\_

**MXS**: 6-poles where  $\beta_x$  is large **MXG**: 6-poles where D is large

2D map of sextupole field corrections for <u>horizontal emittance</u> and  $(\Delta p/p)^2$ \_\_\_\_\_

**MXS**: 6-poles where  $\beta_x$  is large **MXG**: 6-poles where D is large



2D map of sextupole field corrections for <u>horizontal emittance</u> and  $(\Delta p/p)^2$ \_\_\_\_\_

**MXS**: 6-poles where  $\beta_x$  is large **MXG**: 6-poles where D is large



2D map of sextupole field corrections for <u>horizontal emittance</u> and  $(\Delta p/p)^2$ \_\_\_\_\_

**MXS**: 6-poles where  $\beta_x$  is large **MXG**: 6-poles where D is large



2D map of sextupole field corrections for <u>horizontal emittance</u> and  $(\Delta p/p)^2$ \_\_\_\_\_

**MXS**: 6-poles where  $\beta_x$  is large **MXG**: 6-poles where D is large















# Conclusions

A requirement for the EDM experiment on charged particles is 1000 s SCT

It has been demonstrated that the **lifetime of a horizontally polarized deuteron beam** may be substantially extended (**up to ~ 1000 s**) through a combination of:

- Beam bunching on the first harmonic
- Electron cooling

Combination of SEXTUPOLE fields where both X and Y chromaticities are near zero

# Conclusions

A requirement for the EDM experiment on charged particles is 1000 s SCT

It has been demonstrated that the **lifetime of a horizontally polarized deuteron beam** may be substantially extended (**up to ~ 1000 s**) through a combination of:

- Beam bunching on the first harmonic
- Electron cooling
- Combination of SEXTUPOLE fields where both X and Y chromaticities are near zero

This test was done for a purely magnetic ring and meets the requirement for a storage ring to search for an EDM!

# Future work

- Feedback (for frozen spin)
- Polarimeter design database
- Polarimeter detector prototyping
- Crossed E,B field elements (deuteron)
- High precision beam control
- EDM ring design

# Future work

- Feedback (for frozen spin)
- Polarimeter design database
- Polarimeter detector prototyping
- Crossed E,B field elements (deuteron)
- High precision beam control
- EDM ring design

# Thanks for your attention!



**Collaboration** (Jülich Electric Dipole Moment Investigations) SPARE SLIDES

# PHYSICAL MOTIVATIONS

### **Electric Dipole Moment** of fundamental particles



### Standard Model (SM):

- Not enough to explain *Baryon Asymmetry*
- Too small CP violation

Def: permanent charge displacement within the particle volume



Assuming CPT symmetry

T violation = **CP violation** 

 $EDM_{_{SM}}$  too small to be observed  $EDM_{_{DSM}}$  within exp. limits

### PHYSICAL MOTIVATIONS

### **CP violating sources**

### **STANDARD MODEL**

- Weak interaction: complex phase  $\boldsymbol{\delta}$  in CKM quark mixing matrix
- Strong interaction:  $\boldsymbol{\theta}_{ocn}$

$$|d_{n}| = |d_{p}| \approx 4.5 \cdot 10^{-15} \theta_{QCD} \longrightarrow |d_{n}^{exp}| \leq 10^{-26} e \cdot cm \Rightarrow \theta_{QCD} \leq 10^{-11}$$
  
Axion search

### **SUSY**

- quark-EDM  $\Delta = d_{down} d_{up}/4$
- Chromo-EDM: EDM generated by a loop with SS-particle

$$\Delta^+ = d_{up}^c + d_{down}^c \qquad \Delta^- = d_{up}^c - d_{down}^c$$

$$d_{n} = 1,4 \Delta + 0,83 \Delta^{+} - 0,27 \Delta^{-}$$
$$d_{p} = 1,4 \Delta + 0,83 \Delta^{+} + 0,27 \Delta^{-}$$
$$d_{d} = d_{up} + d_{down} - 0,2 \Delta^{+} - 6 \Delta^{-}$$

If a **non-zero deuteron EDM** is measured, it would have a special sensitivity to the chromo-EDM due to the large coefficient of  $\Delta^-$ .

The EDM measurement of **several particles** is needed to determine the CP violating sources scenario.

#### \* C.A. Baker et al.. Phys. Rev. Lett. 97, 131801 (2006) PHYSICAL MOTIVATIONS \* The ACME collaboration Science 343, p. 269-272 (2014) 10<sup>-20</sup> 10<sup>20</sup> Electromagnetic **EDM theoretical predictions and** (e.cm) 10<sup>-22</sup> 10<sup>221</sup> experiments neutron: • Experimental Limit on d 10<sup>-24</sup> $10^{24}$ $2,9 \times 10^{-26} e \cdot cm / neutron*$ $10^{-26}$ electron: Multi 14 SUSY Higgs **Present limits ∮**~1 ∅ $8,7\times10^{-29}e\cdot cm^{1}$ $1\bar{0}^{28}$ electron<sup>\*</sup> $\phi \sim \alpha/\pi$ Left-Right p,d $10^{-30}$ 10<sup>-30</sup> 10<sup>-29</sup> e cm Future goal storage rings 1960 1970 1980 1990 2000 $\cdot 10^{-32}$ No EDM has been observed yet 10<sup>-34</sup> Standard Because SM contributions are small Model EDMs are an excellent place to · 10<sup>-36</sup> search for NEW PHYSICS. J.M. Pendlebury and E.A. Hinds $-10^{-38}$ NIM A 440 (2000) 471 **New CP violation sources!**

## **Data Acquisition (DAQ)**

\*Z. Bagdasarian et al., Phys. Rev. ST Accel, Beams 17, 052803 (2014)

- Timing  $\rightarrow$  Count turn number **n** (bunched beam) •
- Compute total spin precession angle •

 $\theta_{s} = 2 \pi G \gamma n$ 

- Bin by phase  $\varphi$  the spin precession angle circle
- Compute asymmetry in each bin •

As the polarization rotates













### Sextupole effect

**Decoherence sources** 

Spin Tune spread:  $\Delta v_s = G \Delta \gamma$ 

Betatron oscillations increase particle **path length** 

$$\frac{\Delta L}{L} \propto \frac{\theta_x^2 + \theta_y^2}{4}$$

Bunching freezes the revolution frequency  $\frac{\Delta \gamma}{\gamma} \propto \frac{\Delta L}{L}$ 





## Sextupole effects

### **SCT dependence on sextupoles**

$$\frac{1}{SCT} = |A + a_1 S + a_2 L + a_3 G| \theta_x^2$$
  
+ |B + b\_1 S + b\_2 L + b\_3 G|  $\theta_y^2$   
+ |C + c\_1 S + c\_2 L + c\_3 G|  $\left(\frac{\Delta p}{p}\right)^2$ 

### Drivers:

- beam widths
- 2<sup>nd</sup> order mom.

spread

Sextupole fields MXS, MXL, MXG

### Ago 2013: <u>new issues</u>



### Wide horizontal profile

- Balck dots=data points
- **Red line**=template function based on **Gaussian spin distribution**



## Ago 2013: <u>new issues</u>



### Wide horizontal profile

- Balck dots=data points
- **Red line**=template function based on **Gaussian spin distribution**

### Wide $\Delta p/p$ distribution

We probably need **new template curves** 

- the distribution of synchrotron amplitudes is not gaussian

- synchrotron oscillations are not simple harmonic solution (sinusoidal potential)



### Wide $\Delta p/p$ distribution



# Ago 2013: <u>new issues</u>

Extraction method: Ramping changes the spin tunes

small Froissart-Stora scan that flips the polarization

# It may be possible to reproduce the data with "no-lattice" model.