Discussion

CPEDM Take-away

Alexander Nass and Frank Rathmann IKP, Forschungszentrum Jülich

744. WE-Heraeus-Seminar Towards Storage Ring Electric Dipole Moment Measurements March 29 – 31, 2021

Stage 2: Prototype EDM storage ring (PTR)

100 m circumference

- p at 30 MeV all-electric CW-CCW beams operation
- p at 45 MeV frozen spin including additional vertical magnetic fields

Challenges – open issues

- All electric & E/B combined deflection
- Storage time
- CW-CCW
 - operation
 - orbit difference to pm
- Spin-coherence time
- Polarimetry
- Magnetic moment effects
- Stochastic cooling

Primary purpose of PTR

- study open issues.
- first direct proton EDM measurement.

Discussion

Alexander Nass and Frank Rathmann (a.nass@fz-juelich.de & f.rathmann@fz-juelich.de)

Technical Design Report (ready end of 2022)

A. Nass & F. Rathmann, plus project engineer

- Present status summarized in CERN Yellow Report (CYR)
 - Storage Ring to Search for Electric Dipole Moments of Charged Particles
 - Feasibility Study [1]
- ► Next step: ♥ EDM prepares Technical Design Report
 - PTR Lattice design
 - Beam transfer and injection system
 - Electrostatic deflectors
 - Magnetic bends
 - Multipole elements
 - Ring vacuum system
 - Stochastic cooling
 - RF Cavity
 - Spin manipulation tools
 - Polarimeter
 - Beam diagnostics

▶ Along with: Systematic studies, Spin tracking, error evaluation

red: needs strong support (CERN, MPIK-HD, Liverpool U., ...) green: already addressed

Discussion I

Technical & scientific aspects

- MPIK CSR: Voltage ripple $\Delta U/U \approx 7 \times 10^{-6}$
 - Estimate beam loss mechanisms and beam lifetime in PTR
 - Include aperture restriction in bends
- BPMs: Squid versus Rogowski
 - Estimate SNR for both systems
- Vacuum vessel: Ti, Al, or SS
- Experimentally, little is known about $\tau_{SCT}(p)$
 - Study τ_{SCT}(p), albeit COSY close to EOL
 - ▶ Build SCT model for *d* based on: $\frac{\Delta p}{p}$, $\epsilon_{x,y}$, $\xi_{x,y}$, and $I \Rightarrow$ transfer to *p*
- Split development of PTR lattice elements into:
 - electrostatic bends \vec{E}_x (PhD student)
 - magnetic bends \vec{B}_y (PhD student)
 - electrostatic quadrupoles (engineering)

Discussion II

Site for PTR

Setup of **Bunch Accumulator + PTR** possible at CERN or elsewhere, but:

building, polarized ion source, pre-accelerator and bunch accumulator

Organization

- ▶ RWTH (IAEW), IKP, CERN: design and prototyping of lattice elements
 - IAEW application to DFG
- Applicability of Gentner Program for PhD students working on electrostatic elements
- Seek support from PBC working group
- **ERC Design Study** in Horizon Europe: INFRADEV-01-01-2022
 - call opening: winter 2021, duration: 3-4 years, 2023-26
 - participants: IKP/GSI, Ferrara, CERN, RWTH, MPIK-HD, Liverpool, Cracow, Grenoble, ++

Discussion III

Maintain momentum

- Trigger discussion between GSI, CERN and FZ Jülich on PTR
- ▶ Arrange for letters of support from CERN (and other labs and groups) to
 - GSI director Paolo Giubelino
 - German BMBF
 - Helmholtz
 - North Rhine-Westphalia
 - Italian ministry of science
 - . . .

Bunch accumulator and EDM Prototype Ring

References I

 F. Abusaif et al., "Storage Ring to Search for Electric Dipole Moments of Charged Particles -Feasibility Study," 2019. https://arxiv.org/abs/1912.07881.