Spin Tracking with COSY INFINITY and its Benchmarking

2015-05-05 | Marcel Rosenthal for the JEDI collaboration

Outline

> Methods
> Simulation toolbox
> New extension: Transfer maps for time-varying fields
> Application I: RF-B Solenoid Driven Oscillations
> Induced RF field spin resonance
> Benchmarking of measurement, analytical estimation and tracking
> Application II: RF-E×B Wien filter Driven Oscillations
> EDM method based on RF fields
> Benchmarking of tracking and analytical estimation
> Systematic limitations
> Conclusion

Thomas-BMT-Equation

> Equation of spin motion for relativistic particles in electromagnetic fields:

$$
\begin{aligned}
& \frac{\mathrm{d} \overrightarrow{\mathrm{~S}}}{\mathrm{dt}}=\overrightarrow{\mathrm{S}} \times \vec{\Omega}_{\mathrm{MDM}}+\overrightarrow{\mathrm{S}} \times \vec{\Omega}_{\mathrm{EDM}} \\
& \vec{\Omega}_{\mathrm{MDM}}=\frac{\mathrm{e}}{\gamma \mathrm{~m}}\left[(1+\mathrm{G} \gamma) \overrightarrow{\mathrm{B}}+\left(\mathrm{G} \gamma+\frac{\gamma}{1+\gamma}\right) \frac{\overrightarrow{\mathrm{E}} \times \vec{\beta}}{\mathrm{c}}-\frac{\mathrm{G} \gamma^{2}}{\gamma+1} \vec{\beta}(\vec{\beta} \cdot \overrightarrow{\mathrm{~B}})\right] \\
& \vec{\Omega}_{\mathrm{EDM}}=\frac{\mathrm{e}}{\mathrm{~m}} \frac{\eta}{2}\left[\frac{\overrightarrow{\mathrm{E}}}{\mathrm{c}}+\vec{\beta} \times \overrightarrow{\mathrm{B}}-\frac{\gamma}{\gamma+1} \vec{\beta}\left(\vec{\beta} \cdot \frac{\overrightarrow{\mathrm{E}}}{\mathrm{c}}\right)\right]
\end{aligned}
$$

$$
\begin{array}{l|l|c|}
\hline \vec{\mu}=2(\mathrm{G}+1) \cdot \frac{\mathrm{e}}{2 \mathrm{~m}} \overrightarrow{\mathrm{~S}} & \text { Proton } & 1.792847357 \\
\hline & \text { Deuteron } & -0.142561769 \\
\hline \overrightarrow{\mathrm{~d}}=\eta \cdot \frac{\mathrm{e}}{2 \mathrm{mc}} \overrightarrow{\mathrm{~S}} & \mathrm{~d} & \eta \\
\hline & 10^{-24} \mathrm{e} \mathrm{~cm} & \sim 10^{-9} \\
\hline & 10^{-29} \mathrm{e} \mathrm{~cm} & \sim 10^{-14} \\
\hline
\end{array}
$$

COSY Toolbox

M. Berz, K. Makino et al.

- Calculator:
- Optical functions

Armadillo

- Closed orbit
- Spin tune
- Tracker:
- Static maps
- RF maps

Transfer Maps

> Solutions for equations of motion to arbritary order: $\mathcal{M}\left(\vec{z}_{0}\right), \mathcal{A}\left(\vec{z}_{0}\right)$
> Relate phase space and spin coordinates before and after element
> Static fields:

> What about time-varying fields?

Transfer Maps for RF fields

> Radiofrequency fields:
> Split element into N maps covering the 360° phase interval of the time-varying field (currently $N=36$).

Experimental Setup for Studies

> Beam setup:
> Polarized deuterons, $970 \mathrm{MeV} / \mathrm{c}$
> Electron cooled and bunched
> Optimized Spin Coherence Time
> Idea:

> Induce spin resonance by RF-B solenoid and measure characteristica of vertical polarization oscillations

Measured time distribution

 paticesintrevevnhis spaside.

Bunch center: $\tau=0$
> Time marking system allows for determination of event time with respect to RF cavity
> Extraction of measured time distribution (τ-distribution) of particles in the bunch is possible.

Deconvolved amplitude distribution

deconvolution

Bunch center: $\tau=0$
> Initial longitudinal amplitude distribution required for analytical estimations and for tracking simulations.
> Assuming solution for an harmonic oscillator $\tau \approx \hat{\tau} \cdot \cos \left(2 \pi v_{\text {sync }} n+\phi_{\text {sync }}\right)$, the deconvolution results in the longitudinal synchrotron amplitude $\hat{\tau}$-distribution.

Benchmarking Results

> Radiofrequency field: $B_{\text {sol }}=\hat{B}_{\text {sol }} \cdot \cos \left(2 \pi v_{\text {sol }} \cdot n+\phi_{\text {sol }}\right)$ turned on at ~ 11 mio. turns.
> resonance condition: $v_{\text {sol }}=G \gamma+K, K \in \mathbb{Z}$

Benchmarking Results

> Radiofrequency field: $B_{\text {sol }}=\hat{B}_{\text {sol }} \cdot \cos \left(2 \pi v_{\text {sol }} \cdot n+\phi_{\text {sol }}\right)$ turned on at ~ 11 mio. turns.
> resonance condition: $v_{\text {sol }}=G \gamma+K, K \in \mathbb{Z}$

Analytical estimation:

$$
P_{y}(n)=\int_{-\infty}^{\infty} \rho(\hat{\tau}) S_{y}(n, \hat{\tau}) \mathrm{d} \hat{\tau}
$$

RF Wien filter induced spin resonance

> Idea:
> RF-E×B Wien filter with $\overrightarrow{\mathrm{B}} \| \overrightarrow{\mathrm{e}}_{\mathrm{y}}$ on resonance induces buildup of vertical spin component for non-vanishing EDM.
> Minimized impact on beam, but interaction on spin
> Analytical estimation for closed orbit and $S_{z}(0)=1$:

$$
\frac{\mathrm{d} s_{\boldsymbol{y}}}{\mathrm{d} n} \approx-\frac{\alpha_{0}}{2}\left(\boldsymbol{n}_{\boldsymbol{y}}^{2} \cdot \boldsymbol{n}_{\boldsymbol{z}} \cdot \sin \left(\phi_{\mathrm{WF}}\right)+\boldsymbol{n}_{\boldsymbol{y}} \cdot \boldsymbol{n}_{\boldsymbol{x}} \cdot \cos \left(\phi_{\mathrm{WF}}\right)\right)+\text { fast osc. terms }
$$

$$
\alpha_{0}=\frac{(1+G)}{\gamma} \frac{q}{p}(\widehat{B} \cdot L)_{\mathrm{WF}}
$$

$$
B_{\mathrm{WF}}(n)=\widehat{B}_{\mathrm{WF}} \cdot \cos \left(2 \pi v_{\mathrm{WF}} \cdot n+\phi_{\mathrm{WF}}\right)
$$

$E_{\mathrm{WF}}(n)=\beta c \cdot B_{\mathrm{WF}}(n)$
$\left(\boldsymbol{n}_{\boldsymbol{x}}, \boldsymbol{n}_{\boldsymbol{y}}, \boldsymbol{n}_{z}\right)$:
spin closed orbit of static ring
@ RF Wien filter location

Buildup for different EDM magnitudes

> Buildup scales linearly with EDM magnitude and depends on initial RF Wien filter phase

> Good agreement between analytical estimates and tracking results

Buildup for Misalignments

> Introduce misalignments of the 56 lattice quadrupoles
> Gaussian distributed with $\sigma_{\text {mis }}=0.1 \mathrm{~mm}$

$>$ Pure EDM: $\boldsymbol{n}_{\boldsymbol{x}} \neq \mathbf{0}, \quad$ misalignments: $\boldsymbol{n}_{\boldsymbol{x}} \neq \mathbf{0}$ and $\boldsymbol{n}_{\boldsymbol{z}} \neq \mathbf{0}$

Connection to Orbit RMS

> Main contribution from additional radial magnetic fields Besides spin motion, also beam motion is affected

> Vertical buildup ΔS_{y} per turn for RMS of 1 mm similar to $\eta=10^{-4}$ ($d=5 \cdot 10^{-19} \mathrm{e} \mathrm{cm}$)

Summary

> Method:
Calculation of maps for time-varying elements implemented into COSY INFINITY extension
> Application I: RF-B Solenoid
Successfully benchmarked with analytical estimates and measured data for RF-B solenoid induced resonance
> Dependence of oscillation damping on solenoid frequency has been reproduced
> Application II: RF-E \times B Wien filter
Tracking results for EDM related buildup match with analytical calculations.
> Gaussian distributed quadrupole displacements which introduce an vertical orbit RMS of 1 mm lead to a buildup similar to an EDM of $d \approx 5 \cdot 10^{-19} \mathrm{ecm}$

