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3 Spin evolution, approximately horizontal orbits
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I Projection of 3D orbit onto the 2D laboratory horizontal design plane.
x is the deviation of the (bold face) particle orbit from the (pale face)
design orbit.

I If the bend plane coincides with the design bend plane (as is always
approximately the case) β̂ββ0 and ẑ are identical.

I θ is the reference particle global horizontal angle and ϑ is the tracked
particle global horizontal angle .

I Betatron oscillations cause θ and ϑ to differ (slightly) on a turn by
turn basis but, on the average, they are the same.

I ψ is the global orientation angle of spin vector sparallel .
I α is the angle between sparallel and the particle orbit.



4 2D spin precession during circular motion

I For motion restricted to a single plane the BMT equation can
be solved exactly in closed form.

I In this frame any precession of the spin is purely around an
axis normal to the plane. Because of ultraweak vertical
focusing, (e.g. in the WW-AG-CF lattice) vertical betatron
oscillations are negligible for the 2D evolution through electric
bend elements. Any betatron oscillations actually present are
treated as exactly horizontal.

I The initial spin vector is

s = −s‖ sinψ0 X̂ + sy Ŷ + s‖ cosψ0 Ẑ. (1)

Here sy Ŷ is the out-of-plane component of s, s‖ is the
magnitude of the in-plane projection of s, and α is the angle
between the projection of s onto the plane and the tangent
vector to the orbit.



5 Vector force diagram

+

ŝ

E
F  x̂−eE

F  
M

x̂= −evB

=

reference
frame

global

B

θ

ψ

y

z

x

X

Y

Z

v

electric and magnetic field

2D circular motion in combined

spin (unit) vector
both orbit and 

remain in XZ plane

α

I For a positive particle moving away, along the positive-z axis, with
increasing global angle θ, for electric field E = −E x̂ and magnetic
field B = B ŷ to sum constructively, causing the particle to veer to the
right (in the negative-x direction), requires both E and B to be
positive.

I For positive spin tune Qs the spin precession angle α increases with
increasing θ; i.e.

dα

dθ
= Qs . (2)



6 Spin tune with superimposed E and B fields

I Consider the precession of (unit magnitude) spin vector s lying
in the (x , z) plane and belonging to a proton moving in the
same (x , z) plane,

I For the electric −E x̂ and magnetic B ẑ fields shown in the
figure, Jackson (11.171) (in MKS units) gives the time rate of
change

d

dt
(β̂ · s) = − sinα

dα

dt

= − 1

mc/e
s ·
((g

2
− 1
)

(β̂ × cB
)

+
(gβ

2
− 1

β

)
(−x̂E )

)
= − 1

mc/e

1

γβ

(
GγβcB +

(
Gγ − 1 + G

γ

)
E

)
sinα

= − 1

pc/e

(
QM

s βcB + QE
s E
)

sinα

where G =
g

2
− 1, QM

s = Gγ, and QE
s = Gγ − 1 + G

γ
. (3)



7 Assuming the orbit is circular with radius r0, the Lorentz law
provides the centripetal force such that

v

r0
=

dθ

dt
=
βcB + E

p/e
. (4)

Combining the two previous equations produces

dα

dθ
= Qs =

QM
s βcB + QE

s E

βcB + E
= ηMQM

s + ηE QE
s , (5)

where “fractional bend coefficients”,

ηM =
βcB

βcB + E
, ηE =

E

βcB + E
, (6)

satisfying ηM + ηE = 1, have been introduced. As well as deriving
the spin tune formulas in pure E and B fields, this has shown,
when the bending field is a superposition of electric and magnetic
fields, that the spin tune fractions are equal to the bend fractions.



8 Superimposed electric and magnetic bending—protons

We require the resulting spin tune QEM to vanish;

QEM = η
E

QE + (1− η
E

)QM = 0. (7)

Solving for η
E

,

η
E

=
G

G + 1
γ2. (8)

For example, try γ = 1.25;

η
E

=
1.7926

2.7926
× 1.252 = 1.000, (9)

which agrees with the “magic” proton value, for which no magnetic
bending is required. In the non-relativistic limit γ = 1 and

ηNR
E =

1.7926

2.7926
= 0.6419 ≈ 2

3
. (10)



9 Superimposed electric and magnetic bending—deuterons

I For the deuteron Gd := −0.1429872721. Expressed in terms
of ηE , the frozen spin condition is

η
E

=
G

G + 1
γ2 =

−0.1429872721

1− 0.1429872721
γ2 (11)

I Because γ2 > 0, this condition requires ηE to be negative.

I For example, with r0 = 8.4508 and γd = 1.13325, (conditions
assumed in the 2009 BNL proposal) ηE = −0.21427 and
ηM = 1.21427. The resulting magnetic and electric fields are

B = 0.47929 T, E = −53.9 MV /m. (12)

I Though B agrees almost exactly with the BNL proposal[4],
the electric field disagrees by a large (and unattainable) factor.

I Perhaps the disagreement results from my formalism’s
requiring the electric and magnetic fields to “fight each
other”? Clearly this disagreement needs to be resolved!!!



10 Global evolution of 2D spin vector s‖ in E+M field

I One motivation for this section is to investigate the
disagreement just mentioned concerning superimposed electric
and magnetic bending.

I Previously it is the evolution of the local angle α giving the
spin orientation relative to the orbit that has been used to
calculate the spin tune.

I Here, instead, we evolve the 2D spin vector s‖ itself, without
reference to its orientation relative to the particle direction.

I Since the spin vector has unit length and lies in a horizontal
plane, it is sufficient to keep track of a single global angle ψ.

I The spin vector orientation angle α, relative to the particle
direction, can be most easily recovered after the particle has
completed a single turn.



11 Global evolution of 2D spin vector s in E+M field

Jackson (11.170) gives the evolution equation (in MKS units) for a
2D unit spin vecctor s

s = cosψẑ− sinψx̂

ds

dt
= (− sinψẑ− cosψx̂)

dψ

dt
, (13)

where ds/dt has been calculated assuming uniform speed circular
motion, always orthogonal to both E = −E x̂ and B = By. Using
ẑ× (−x̂) = −ŷ, the result is

ds

dt
=

1

mc/e
s× ŷ

((
G +

1

γ

)
cB +

(
G +

γ

γ + 1

)
βE

)
. (14)

Substituting from (13) into (14), the same equation is obtained for
each of the two non-vanishing vector components;

dψ

dt
=

1

mc/e

((
G +

1

γ

)
cB +

(
G +

1

γ + 1

)
βE

)
. (15)



12 To caclulate tunes, in order to obtain dψ/dθ, we need dθ/dt, to
change independent variable t → θ, where 0 ≤ θ ≤ 2π is
circumferential angular coordinate around the ring. For our circular
motion the factor needed is

dt

dθ
=

p/e

βcB + E
=
γβmc/e

βcB + E
, (16)

which (interestingly) is independent of radius r0. We then obtain

dψ

dθ
=

1

βcB + E

((
Gγ + 1

)
βcB +

(
Gγ +

γ

γ + 1

)
β2E

)
. (17)

By setting either E = 0 or B = 0 one can obtain “tunes” Q̃E
s or

Q̃M
s , to check against results obtained previously for purely

magnetic or purely electric bending;

Q̃M
s = Gγ + 1; Q̃E

s = Gγ − G + 1

γ
+ 1, (18)

The offsets by 1 have come about because these tunes are
referenced to ψ rather than to α (where the term “spin tune” is
conventionally defined).



13 Returning to Eq.(17) and the superimposed electric and magnetic case,
after using the pure bend results just mentioned and further simplification,
we obtain

Q̃EM
s =

(
Gγ

βcB

βcB + E
+
(

Gγ +
G + 1

γ

) E

βcB + E
+ 1

)
=

(
Gγ ηM +

(
Gγ +

G + 1

γ

)
ηE + 1

)
, (19)

where ηE and ηM = 1− ηE are the bending fractions defined previously.
Finally, subtracting the “1”, we obtain a result used in a previous
lecture—the (conventionally-defined) spin tune QEM

s with superimposed
electric and magnetic bending.

QEM
s = QM

s ηM + QE
s ηE . (20)

It is my suspicion that, starting with the 2009 BNL deuterium
EDM proposal[4], deuterium EDM proposals, while “cancelling”
electric and magnetic torques, have not correctly handled the spin
tune in rings with superimposed electric and magnetic bending.



14 Solving the BMT equation (in pure electric field)

Substituting for the spin vector produces

d

dt
(s‖ cosα) = − e

mpc
(s‖ sinαE )

(
g

2
β − 1

β

)
. (21)

I With the orbit confined to a plane, any precession occurs
about the normal to the plane, conserving sy .

I Since the magnitude of s is conserved it follows that the
magnitude s‖ is also conserved.

I This allows s‖ to be treated as constant in this equation,
which reduces to



15 I
dα

dt
=

eE

mpc

(
g

2
β − 1

β

)
. (22)

I Meanwhile the velocity vector itself has precessed by angle ϑ.
The precession rate of ϑ is governed by the equation for
circular motion, pv/r = eE ;

dϑ

dt
=

v

r
=

eE

p
, (23)

I The independent variable can be switched, t → ϑ→ θ by
dividing these two equations, and noting that, though ϑ and θ
are not the same instantaneously, over long times they
advance at the same average rate;

dα

dθ
=

pc

mpc2

(
g

2
β − 1

β

)
= γ

(
g

2
− 1

)
− g

2

1

γ
(24)

I Note that β has been eliminated in favor of γ.



16 I It is also conventional to express spin evolution in terms of
“anomalous magnetic moment” G = g/2− 1, yielding

dα

dθ
= Gγ − G + 1

γ
. (25)

I The first term, Gγ can be recognized as the spin tune QM
s in

a magnetic ring. The second term corrects for replacing
magnetic bending by electric bending.

I Integrating over θ, the bend frame precession advance is the
sum of two definite integrals

∆α(θ) = GIγ(θ)− G + 1

2
Iγi (θ), (26)

where

Iγ(θ) =

∫ θ

0
γ(θ′)dθ′, and Iγi (θ) =

∫ θ

0

dθ′

γ(θ′)
. (27)

To account for fringe fields two more terms, ∆αFF,in and
∆αFF,out, also need to be included eventually.



17 Re-derivation to include horizontal betatron displacement

I We need to account for the transverse position oscillations
accompanying potential energy variation.

I For simplicity assume the lattice is uniform—no drift regions.

I The spin precession angle α, relative to the proton direction,
evolves as

dα

dt
=

eE (x)

mpc

(
gβ(x)

2
− 1

β(x)

)
. (28)

I The variables β, γ, and E in this equation are now being
allowed to depend on x .

I Definition of angular momentum and its conservation yield

dθ

dt
=

L

γmpr2
; (29)

I This is valid in bend regions, but would not be in drift regions,
where r becomes ambiguous.



I In this equation the angular momentum L is a constant of the
motion (because the force is radial) but γ and r = r0 + x
depend on x .

I Combining the two previous equations,

dα

dθ
=

E (x)(r0 + x)2

β(x)Lc/e

((g

2
− 1
)
γ(x)− g/2

γ(x)

)
, (30)

I To find the evolution of α over long times, for an individual
particle, we need to average this equation.

I What makes this averaging difficult is the fact that the final
factor has, intentionally, been arranged to cancel for the
central, design particle.

I The initial factor, though not constant, varies over a quite
small range.

I A promising approximation scheme for this factor is to neglect
the (small) rapidly oscillating betatron contibution to x
coming from the betatron oscillation



19

I We retain only the off-momentum part x = Dx∆γO

associated with the slowly varying synchrotron oscillation;〈dα

dθ

〉
(γO) =

eE (Dx∆γO)(r0 + Dx∆γO)2

Lcβ(Dx∆γO)

〈(g

2
−1
)
γ(x)− g/2

γ(x)

〉
.

(31)

I No superscript “I” is needed on γ(x) in the final factor since
only “inside” motion is to be under discussion.

I If the average of 〈γ〉 were the inverse of 〈1/γ〉 the averaging
over horizontal betatron oscillation would be easy. But this is
not true.

I However the above factorization has allowed the averaging
over “outside variable” γO to be deferred.



20 Virial theorem decoherence calculation

I The virial theorem can be used to perform 3D averages over
multiparticle systems subject to central forces.

I Also, though our electric field is centrally directed within any single
deflecting element, because of drift regions in the lattice, the centers
of the various deflection elements do not coincide.

I We can therefore calculate only the spin decoherence applicable to
passage through the bend regions, which is where the overwhelmingly
dominant part of the momentum evolution occurs.

I The independent variables θ and t are very nearly, but not exactly
proportional to each other instantaneously, so averages with respect
to one or the other are not necessarily identically instantaneously.

I However, with bunched beams over long times, θ and t are strictly
proportional (on the average) and the two forms of averaging have to
be essentially equivalent.

I Because there are so many variants of “the virial theorem” it is easier
to derive it from scratch than to copy it from one of many possible
references.



21 The “virial” G is defined, in terms of radius vector r and momentum p, by

G = r · p (32)

Our electric field is

E = −E0

( r0
r

)1+m
r̂, (33)

and Newton’s law gives
dp

dt
= eE. (34)

In a bending element the time rate of change of G is given by

dG

dt

∣∣∣
bend

= ṙ · p + r · ṗ

= mpγv2 − eE0
r1+m
0

rm

= mpc2γ −mpc2 1

γ
− eE0r0

rm
0

rm
.

Averaging over time, presuming bounded motion, and therefore requiring
〈dG/dt〉 to vanish, one obtains〈1

γ

〉
= 〈γ〉 − E0r0

mpc2/e

〈
rm
0

rm

〉
. (35)

This provides the needed relation between 〈γ〉 and 〈1/γ〉.



22 Applying this result to perform the (time)-average yields〈dα

dθ

〉
=

eE (Dx∆γO)(r0 + Dx∆γO)2

Lcβ(Dx∆γO)

(
−〈γ〉+ g

2

E0r0
mpc2/e

〈
rm
0

rm

〉)
. (36)

For specializing this result to frozen spin γ = γ0 operation, the following
formulas, can be employed:

γ(x) ≡ γ0 + ∆γ,

E0r0
mpc2/e

= γ0 −
1

γ0
,

rm
0

rm
≈ 1−m

x

r0
,

γ0 =
g

2

(
γ0 −

1

γ0

)
.

I These formulas assume the beam centroid energy and the storage ring
lattice are exactly “magic”. If not true the average spin orientation
would change systematically. What is being calculated is the spin
orientation spreading.

I For perfectly sinusoidal synchrotron oscilations, the initial factor can
be replaced by its average value. This yields〈dα

dθ

〉
≈ − E0r2

0

β0Lc/e

(
〈∆γI 〉+

g

2

m

r0

(
γ0 −

1

γ0

)
〈x〉
)
. (37)

(The superscript “I” has been restored as a reminder that ∆γI is
evaluated within bend elements, as contrasted to within drift
sections.) The numerical value of the leading factor is about 1.



23 I Copying the final equation from the previous slide, evaluating the
leading factor on the design orbit, and dropping the negative sign, the
decoherence rate is〈dα

dθ

〉
= 〈∆γI 〉+

g

2
m
(
γ0 −

1

γ0

) 〈x〉
r0
. (38)

I Typical values for the relevant quantities are

m = ±0.02, (39)

x

r0
=

0.01

40
≈ 3× 10−4 (40)

∆γI = 3× 10−6 (41)

I Small as they are, to linear approximation each of these averages to
zero. To following order〈dα

dθ

〉
∼ (3× 10−6)2 +

g

2
4× 10−4

(
γ0 −

1

γ0

)
(3× 10−4)2. (42)

I Decoherence in bend fringe fields is likely to be greater than this, but
it also cancels if care is taken to assure linear synchrotorn oscillations.
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I We have shown, therefore, for “weak-weaker” focusing, that
decoherence in the bend regions can be neglected even in the
presence of horizontal betatron oscillations,

I We have previously argued that decoherence associated with vertical
betatron oscillation can also be neglected.

I Furthermore, very long spin coherence times have been demonstrated
for deuterons in the COSY storage ring in Juelich, Germany, though
only after quite delicate adjustment of nonlinear elements in the ring.
Nevertheless COSY is a strong focusing ring for which spin
decoherence can be expected to be far greater than in our weak
focusing WW-AG-CF lattice.

I Conclusion: if beam bunches can for survive for many hours their
polarization states can probably survive as well.



25 Spin evolution in idealized lattice

Except for idealized specializations, this section reproduces
Sections II, III, and IV of Chapter‘2 of S.Y. Lee’s book “Spin
Dynamics and Snakes in Synchrotrons”, almost line by line. My
purpose is to demonstrate the spectacular simplification that
results when the design orbit can be assumed to remain in a single
plane. A tiny, but confusing, further alteration is to use y (rather
than Lee’s z) as vertical coordinate. The coordinates (x , s, y), in
(horizontal, longitudinal, vertical) order, (which for Lee is (x , s, z))
will be retained, in spite of the fact that more conventional in the
storage ring world would be (horizontal, vertical, longitudinal).
This may seem very confusing (partly because the longitudinal
Frenet coordinate is to be s) but avoids mis-interpreting z as
longitudinal, and it means that, to convert any Lee formula to a
formula in this appendix, one only needs to make the replacement
z → y (plus simplifying assumptions). What motivates this
coordinate order for spin evolution is that it is useful for the first
two coordinates (x , s) to be 2D coordinates in the (horizontal) ring
design plane, with y being vertical.



26 Spinor formalism

I For simplicty in copying from Lee, the discussion will be limited to
ordinary (magnetic) rings. The fundamental BMT spin evolution
formula is (SYL-2.40)

dS

dθ
= S× F, (43)

I θ is bend angle with dθ = ds/ρ in a dipole, ρ is radius of curvature,
and the applied torque (multiplied by an appropriate factor) is
(SYL-2.41)

F = Fx x̂ + Fs ŝ + Fy ŷ. (44)

I In our idealized ring the design orbit lies in the (x , s) plane and
(y = 0, y ′ = 0, y ′′ = 0), where derivatives with respect to s are
indicated by primes.

I Using these values, and copying from (SYL-2.42), the components of
F are

F =

Fx

Fs

Fy

 =

 0
0

−(1 + Gγ) + (1 + Gγ)ρx ′′

 . (45)

I S.Y. justifies dropping the x ′′ factor from Fy by stating that its
average (presumably over betatron oscillation) is zero. The validity of
this simplication will be returned to shortly.



27 Expressing S in terms of its components (SYL-2.43),

S = Sx x̂ + Ss ŝ + Sy ŷ, (46)

and using d x̂/dθ = ŝ and d ŝ/dθ = −x̂ we get (SYL-2.44)

d

dθ

Sx

Ss

Sy

 =

 (1 + Fy )Ss

−(1 + Fy )Sx

0

 =

 0 (1 + Fy ) 0
−(1 + Fy ) 0 0

0 0 0

Sx

Ss

Sy

 .

(47)
This amounts to being the BMT equation, in S.Y. Lee notation, under our
2D assumptions. Continuing to follow Lee, we define (complex) spin
components

S± = Sx ± iSs , with inverses Sx =
S+ + S−

2
, Sy =

S+ − S−
2i

, (48)

as well as field components F± = Fx ± iFs (that will not actually be needed
under our special assumptions) to obtain (averaged) equations of motion,

d

dθ

(
S±
Sy

)
=

(
±iGγS±

0

)
. (49)



28 Solving these differential equations, the spin evolution is given by
(SYL-2.45);

S± = e±iGγθS±0, Sy = constant. (50)

I One sees that S± are eigenfunctions of the propagation, with
eigenvalues e±iGγθ.

I Introduction of S± has further decoupled the spin motion.

I For propagation around the full ring, one sets θ = 2π and
obtains e±2πiGγ as the eigenvalues. It is because the
eigenvalues are complex, while the Si components are real,
that the expansions of eigenfunctions as superpositions of Si

components has required a complex coefficient.

I As a self-consistency check, the spin tune of an “ideal”
(magnetic) lattice has been shown again to be

Qs = Gγ. (51)
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I A curious feature of this relation is its lack of dependence on
radius of curvature ρ.

I Ordinarily the radius of curvature ρ has roughly the same
value in every bend element.

I But one could design a ring where ρ had different values in
different sectors. This would leave relation Qs = Gγ
unaffected. To say, therefore, that Qs = Gγ is a property of
an “ideal’ lattice, has significantly expanded the meaning of
“ideal”.

I A (horizontally) misaligned quadrupole steers the central
orbit, but leaves the central closed orbit in the same
(horizontal) design plane. Why don’t we just pretend that the
misalignment is part of the “design”, in which case we still
have Qs = Gγ.
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I It seems to me, therefore, that Gγ is a global invariant,
unaffected by lattice errors, to the extent they leave the
central closed orbit in a single plane. (Operationally one can
achieve this condition to high accuracy.)

I Small vertical betatron motion would not alter this conclusion
to lowest order. Non-commutation of rotations could violate
the averaging to zero, but only proportional to the product of
already extremely small amplitudes.

I All this is consisrent with the earlier 2D virial theorem
demonstration that spin decoherence can be neglected in our
ultraweak focusing WW-AG-CF lattice. Once a beam bunch
has been “captured” its total spin precesses almost as if the
bunch were a single particle.



31 Spinor representation of spin evolution

Continuing to specialize formulas from S.Y. Lee, our spin evolution
equation has decoupled to two equations (SYL-2.46)

dS‖
dθ

= Gγ ŷ ×
(

Sx x̂ + Ss ŝ + Sy ŷ
)

= Gγ
(

Sx ŝ− Ss x̂
)
,

dSy

dθ
= 0.

Instead of the 3-component real vectors used so far, one can represent the
spin by a 2-complex component general spinor (SYL-2.51),

Ψ =

(
u
d

)
, (52)

Introducing the Pauli matrices, as the three components of a “vector” σσσ,

σx =

(
0 1
1 0

)
, σs =

(
0 −i
i 0

)
, σy =

(
1 0
0 −1

)
, (53)

the 3D spin components can be expressed in terms of ψ as (SYL-2.47)

Si = Ψ†σiΨ, for i = x , s, y . (54)



32 I This permits the S1 components to be expressed in terms of u
and d , (SYL-2.52);

S1 = u∗d + ud∗, S2 = −i(u∗d − ud∗), S3 = |u|2 − |d |2.
(55)

I Even though u and d are complex in general, the Si

components are always real. With this notation, the spin
evolution equation becomes (SYL-2.48)

dΨ

dθ
= −1

2
(σσσ·Ψ) = − i

2
HΨ, where H =

(
Gγ 0
0 −Gγ

)
= Gγσy .

(56)

I Notice that Lee’s perturbation function (SYL-2.49),
ξ(θ) = Fx(θ)− iFs(θ), which would have appeared in the
off-diagonal elements of H, actually vanishes identically (as a
consequence of our pure-planar design orbit assumption).

I For a lattice with arbitrary errors the full formalism continues
to be valid, in which case, of course, the off-diagonal elements
of H need to be correctly included.



33 Spinor transfer matrix
I For initial polarization state Ψ(θ1), solving this differential

equation produces a later polarization state Ψ(θ2) given by
(SYL-2.54)

Ψ(θ2) = e−
i
2

H (θ2−θ1) Ψ(θ1) ≡ t(θ2, θ1) Ψ(θ1). (57)

which defines t(θ2, θ1) as a “transfer matrix” in the spinor
formalism.

I With H diagonal, the spin evolves as

t(θ2, θ1) = e−
i
2

Gγ(θ2−θ1)σy . (58)

I This evolution formula resembles the earlier S± eigenfunction
evolution formula closely, but with the important difference
that the matrix σy appears here in the exponent. This does
not seriously complicate algebraic manipulations for which this
result is to be applied.

I All this “looks like” quantum mechanics, but it has just been
algebraic manipulation.



34 One turn map (OTM)

I Also useful is the one turn transfer map (OTM), t(θ) from
arbitrary initial angle θ, once around the ring and back to the
same location.

I It satisfies (SYL-2.58)

Ψ(θ + 2π) = ΠN
j=1 t(θj+1, θj) Ψ(θ),= t(θ) Ψ(θ), (59)

which concatenates the transfer maps over all N ring sectors
starting from θ and returning to the same position.



35 Storage ring as “Penning-Like Trap”—motivation

I The possibility of storing a large number, such as 1010, of
identically polarized particles makes a storage ring an
attractive charged particle “trap”.

I But, compared to a table top trap, a storage ring is a quite
complicated assemblage of many carefully, but imperfectly,
aligned components, powered from not quite identical sources.

I Fortunately, particle magnetic dipole moments (MDM) have
been measured to exquisitely high precision. For our purposes
MDM’s can be treated as exactly known.

I High enough beam polarization, and long enough spin
coherence time SCT, have made it possible to “freeze” the
spins.



36 I In this frozen state, the importance of some inevitable
machine imperfections, that might otherwise be expected to
dominate the errors, is greatly reduced. Examples are beam
energy spread and ring element positioning and alignment
uncertainties.

I (With the benefit of RF-imposed synchrotron oscillation
stability) the average beam energy is fixed with the same
exquisitely high accuracy with which the MDM is known.

I The polarization vector serves as the needle of a perfect
speedometer. With the RF frequency also known to exquisite
accuracy, the revolution period is similarly well known.

I Then, irrespective of element locations and powering errors,
the central orbit circumference is, if not perfectly known, is at
least known to be constant in time (except for knowable and
controllable element changes).



37 Small deviations from magic condition

I To encompass all of these considerations the storage ring can
be referred to as a “polarized beam trap”.

I This strategem allows some sources of error to less terrifying,
but without eliminating them altogether. Of course one will
build the EDM storage ring as accurately as possible.

I The lack of concern about element absolute positioning must
not to be confused as lack of concern for BPM, orbit
positioning precision, even assuming the ring has been tuned
to be a perfect trap.

I Reduction of systematic EDM measurement error will depend
critically on precision beam positioning control.

I Essential to this way of conceptualizing the experiment is that
the constancy in time of the apparatus parameters is what is
important, rather than the degree to which their absolute
values have ideal values.



38 Small deviations from magic condition

I Suppose the beam magnetization phase has been locked by external
feedback, for example in an electron ring. One can then take
advantage of the precisely-known electron magnetic moment µe and
anomalous moment Ge . The spin tune QE

s relates to precession
around the vertical axis. In an all-electric ring QE

s is given by

QE
s = Geγ −

Ge + 1

γ
,

For frozen spin electrons at the “magic” value, QE
s = 0, γ = γm,

where

γm =

√
Ge + 1

Ge
= 29.38243573. (60)

Solving for γ, (and requiring γ > 0),

γ =
QE

s +

√
QE

s
2

+ 4Ge(Ge + 1)

2Ge
, (61)

we then obtain

γ = 29.38243573 + 431.16379,
∆fy
f0

+ 3163.5

(
∆fy
f0

)2

+ · · · .

Here QE
s has been re-expressed in terms of the frequency deviation

from magic, ∆fy = fy − fm, of the polarization around a vertical axis.
This formula is intended for use only near γm, with the ratio ∆fy/f0
being a tiny number, less than 10−5 for example.
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