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The Electric Dipole Moment (EDM)

Permanent separation of
positive and negative charges

Fundamental property of
particles

EDM is only possible via
violation of time reversal T
and parity P symmetries

Predominance of matter over
antimatter in the Universe

See talks of (J. Pretz and V. Shmakova)
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EDM Measurements at COSY (Proof of principle) [1]

Spins precess around the ~c axis

Oscillating vertical polarization
component py (t) is generated.

Oscillation amplitude
corresponds to EDM tilt angle
ξEDM

Observed signal dominated by
systematic errors
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Systematic Errors

Real machines are far from ideal
conditions

Systematic errors

Mechanical misalignments
Electrical tolerances and
uncertainties
Finite-precision
instrumentation (BPMs, orbit)
Complex electromagnetic
structures (toroidal coils)
Unwanted field components
(fringe regions and mixed field
regions)

Disentangle desired signal from
background: beam and spin
simulations
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The Need for Computational Model

Computational model of COSY tremendously large:

Model considered large if dimension (i.e., number of uncertain
parameters) > 10
Current model is a 526-dimensional numerical model (variation of
quadrupoles, dipoles and steerers)

Ready-solution: Monte-Carlo method

Curse of dimensionality
Very large number of simulations needed for convergence

Solution: sparse modeling

Polynomial Chaos Expansion

General formulation developed and applied in 2017 [2]

Non intrusive version freshly implemented in an in-house beam and
spin tracking code
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Demonstration: Simulation of Steerers’ Uncertainties

Use uncertainties of 46 vertical and
horizontal steerers (power supplies
fluctuations).

Initial ensemble 46× 1000 samples
generated

Single particle simulation considered

RF Wien filter placed in simulation
as resonant transverse spin rotator

Simulations start at telescope
section (injection side)

Initial spin sector ~S =

0
0
1


η = 0 (no EDM).

1000 turns per simulation.

Symplectic tracking:
Hamiltonian [3] and
leap-frogging implementation
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Brief Introduction to PCE

First proposed by Wiener in 1938 as ”Homogeneous Chaos”

Basic idea similar to the Fourier series, where random variables
represented as infinite series in terms of orthogonal polynomials

Let Y be observable(s), as function of set of uncertain parameters ξ
via model M (spin tracking simulation in this case)

Y =M (ξ) =
∑

i∈Im,p

αi Ψi (ξ) . (1)

Expansion coefficients validated using Leave-one-out error

errLOO
=

1

N

N∑
k=1

(
Y − Yk

)2
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Truncation

Using only an expansion order of
p = 3, and m = 46

P =

(
m + p

p

)
=

(m + p)!

m!p!
. (2)

As a result, 18424 basis functions
generated, i.e., 27636 simulations
required for convergence

Solution: sparse PCE with
machine learning

Hyperbolic truncation

‖ · ‖q =

(
m∑

(·)q
)1/q

. (3)
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Machine Learning Algorithm Applied

Using a machine learning
algorithm

Algorithm selects remaining
basis functions most correlated
to the observable

Many solutions obtained and
selected according to
leave-one-out error criteria
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Surrogate Model Validation

Expansion order p = 3

Leave-one-out error: 2.1× 10−8

Truncation order q: 0.3

Basis functions used: only 132
out of 18424

Simulation time: 3 sec

Power supplies variation

Orbit variation
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Stable Spin Axis ~n at Wien Filter Location

~n =

 4.98× 10−5

0.99999999895
2.84× 10−5

 (induced only by steerers)

Estimated plane inclination ξ = 5.74× 10−5
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Stable Spin Axis ~n

Quadratic dependence of ~n on the orbit
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Sensitivity Analysis

Quantification of sensitivity of observable on input random
parameters (only 1st order)

Sensitivity indices computed with zero additional cost
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Summary and Outlook

Precision experiments such as EDM studies require precise and
efficient computational tool for quantification of systematic error

Alternative tool to Monte-Carlo method has been presented: PCE

Systematic contribution to the EDM limit could be estimated

Include all misalignments of dipoles and quadrupoles
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Extra: LAR

1 Set the coefficient to zero and set the residual R = Y − Ŷ
2 Find the vector (basis polynomial) Ψij that is most correlated with

the residual R
3 Move the corresponding coefficient aij from 0 to ΨT

ij R until another

polynomial Ψik has stronger correlation with the residual

4 Move aij and aik in the direction defined by their joint least square

coefficient on the current residual of
(
Ψi j ,Ψik

)
until some other basis

has more correlation with the current residual

5 Continue until P basis (a.k.a. the predictors) have been entered
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