Towards JEDI@COSY: systematic studies of spin dynamics in preparation for the EDM searches

March 10, 2015 | DPG | Artem Saleev for the JEDI Collaboration

Forschungszentrum Jülich, Germany
Landau Institute for Theoretical Physics, Russia
Samara State University, Russia

Outline

- Exploring the COSY ring for Electric Dipole Moment (EDM) studies (JEDI - Jülich Electric Dipole moment Investigations)
- Imperfection background to EDM spin precession
- Mapping the spin tune with static solenoids
- Summary

Cooler Synchrotron COSY in Jülich

Spin Motion in Storage Ring

- Thomas BMT eqn. for the Magnetic Dipole Moment (MDM)

$$
\begin{gathered}
\frac{d \vec{S}}{d t}=\vec{S} \times \vec{\Omega}_{M D M} \\
\vec{\Omega}_{M D M}=\frac{q}{m}\left(G \vec{B}-\left(G-\frac{1}{\gamma^{2}-1}\right) \frac{\vec{\beta} \times \vec{E}}{c}-\frac{G \gamma}{\gamma+1} \vec{\beta}(\vec{\beta} \cdot \vec{B})\right)
\end{gathered}
$$

Spintune := Number of spin turns relative to particle turns, for the ideal pure magnetic ring like COSY:

$$
v_{s}:=\frac{\left|\vec{\Omega}_{M D M}\right|}{\omega_{\text {rev }}}=\frac{\frac{q}{m} G B}{\frac{q}{m \gamma} B}=\gamma G
$$

Spin Precession by EDM in Pure Magnetic Ring

- If particle has $d \neq 0$, T-BMT equation takes form

$$
\frac{d \vec{S}}{d t}=-\frac{q}{m}(G \vec{B}+\eta(\vec{\beta} \times \vec{B})) \times \vec{S}(t)
$$

- Interaction of the EDM with the motional E-field tilts the stable spin axis:

$$
\begin{aligned}
& \vec{n}_{c o}=\left(\vec{e}_{x} \sin \xi+\vec{e}_{y} \cos \xi\right) \\
& \tan \xi=-\frac{\eta}{G} \beta \quad \eta=d \frac{m}{q}
\end{aligned}
$$

- The JEDI Collaboration aims at a first direct measurement
 of the deuteron and proton Electric Dipole Moment (EDM) at COSY
- JEDI looks forward to the RF E-field induced EDM rotation without excitation of the coherent betatron oscillations. Example: RF Wien-Filter, EDM signal comes from ring

[^0]Yuri F. Orlov, Yannis K. Semertzidis. Phys.Rev.ST Accel.Beams 16 (2013) 11, 114001

Imperfection In-plane Fields

- A current task for JEDI: exploring the EDM dynamics and systematic limitations of the EDM searches at all magnetic rings
- Misalignment of any magnetic elements produces the in-plane imperfection magnetic fields
- Imperfection spin kicks perturb $\vec{n}_{c o}$:

$$
\vec{n}_{c o}=\left(\vec{e}_{x} c_{1}+\vec{e}_{y} c_{2}+\vec{e}_{z} c_{3}\right)
$$

- The nonvanishing c_{1} and c_{3} generate a background to the EDM-signal of the ideal imperfection-free case

$$
c_{1}=\sin \xi, \quad c_{3}=0
$$

- The challenge is to control background (for example with the accuracy $c_{1} \sim 10^{-6} \mathrm{rad}$ would amount to sensitivity for $d=10^{-20} e \cdot \mathrm{~cm}$)

EDDA Polarimeter

- Left-Right asymmetry
\Rightarrow vertical polarization

$$
P_{V} \propto \epsilon_{v e r}=\frac{N_{l}-N_{r}}{N_{l}+N_{r}}
$$

- Up-Down asymmetry
\Rightarrow horizontal polarization

$$
P_{H} \propto \epsilon_{h o r}=\frac{N_{u p}-N_{d n}}{N_{u p}+N_{d n}}
$$

Spin Tune Measurement

- Spin vector precesses with $f_{\text {Spin }}=v_{s} f_{\text {rev }}$ in the horizontal plane around spin closed orbit
- Asymmetry is given by:

$$
\epsilon_{\text {hor }}(t)=\frac{N_{u p}-N_{d n}}{N_{u p}+N_{d n}} \approx A P(t) \sin \left(2 \pi v_{s} f_{r e v} t+\phi\right)
$$

- What do we expect? (Deuterons, $p=0.97 \mathrm{GeV} / \mathrm{c}$)

$$
v_{s} \approx 0.16, \quad f_{\text {rev }}=750 \mathrm{kHz}
$$

- Spin precession frequency: $v_{s} \cdot f_{\text {rev }} \approx 120 \mathrm{kHz}$
- Special spin tune analysis software resolves v_{s} with an accuracy 10^{-8} in 1second interval

Spin Tune Response to the Artificial Imperfections

- The spin tune is perturbed by small spin kicks $\sim a$ in the ring imperfection fields:

$$
v_{0}=G \gamma+O\left(a^{2}\right)
$$

- The idea is to probe the in-plane imperfection fields by introducing well-known artificial imperfections.
- Apply artificial imperfections: spin kicks χ_{1} and χ_{2} by the compensation solenoids in e-coolers, located in both straight sections,

$$
v_{s}=v_{0}+O\left(c_{3}^{2},\left(c_{3}^{*}\right)^{2}, \chi_{1}^{2}, \chi_{2}^{2}\right)
$$

- Measure the spin tune shift w.r.t. applied spin kicks,

$$
\Delta v_{s}\left(\chi_{1}, \chi_{2}\right)=v_{s}\left(\chi_{1}, \chi_{2}\right)-v_{0}
$$

Measurement of Spin Tune Shift

- Spin tune shift registered in the data analysis:

- The spin tune shift was observed at $t=[20,45] \mathrm{s}$

The Spin Tune Mapping

Take multiple measurements with different χ_{1}, χ_{2} and build a spin tune map $\Delta v_{s}\left(\chi_{1}, \chi_{2}\right)$: Equal step size for χ_{1}, χ_{2} $\Delta \chi=0.002$

- Spin tune shift w.r.t. the solenoid spin kicks, $\Delta v_{s} \sim \chi_{1}^{2}, \Delta v_{s} \sim \chi_{2}^{2}$

The Spin Tune Mapping

- If the kicks are translated to:

$$
y_{+}=\frac{1}{2}\left(\chi_{1}+\chi_{2}\right) \quad y_{-}=\frac{1}{2}\left(\chi_{1}-\chi_{2}\right)
$$

- then

$$
\Delta v_{s} \propto-\left(y_{-}-a_{-}\right)^{2}, \quad \Delta v_{s} \propto\left(y_{+}-a_{+}\right)^{2}
$$

- The distributions of the data points in $y_{ \pm}$dimension share common parabolic features : equal curvature and extremum $a_{ \pm}$
- It is a sign that the solenoids work as anticipated:

$$
\Delta v_{s}\left(y_{-}=\text {const }\right)
$$

Imperfection Strength

The fitted saddle point at \#:

$$
\begin{gathered}
a_{+}=-0.00111077 \pm 6.1 * 10^{-8} \mathrm{rad} \\
a_{-}=0.00244326 \pm 2.1 * 10^{-7} \mathrm{rad} \\
c_{3}=-0.00299124 \pm 1.8 * 10^{-7} \\
c_{3}^{*}=-0.00163653 \pm 7.1 * 10^{-8}
\end{gathered}
$$

- Position of the saddle point measures projections of SCO, c_{3} and c_{3}^{*}
- Strength of imperfection fields in the ring is at the level of $\approx 3 \mathrm{Tmm}$
- For an ideal ring, the saddle point would be at $a_{ \pm}=0$

Summary

- The technique of spin tune measurement appears as a precision tool for the systematic analysis of the ring imperfections
- First high precision measurement of the imperfection fields at COSY

The ultimate goal of the JEDI: to understand the EDM dynamics in storage rings as a prerequsite to the construction of the dedicated storage ring for the EDM searches

More Details About Spin Tune Analysis

Mapping the Events

1. Assume Spin Tune $v_{\text {assumed }}$

$$
T_{\text {assumed }}=\frac{2 \pi}{v_{\text {assumed }} f_{\text {rev }}}
$$

2. Map all events of a macroscopic time interval (2s) in first period:
$t^{\prime}=\bmod \left(t, T_{\text {assumed }}\right)$
3. Fit asymmetry to first period

Fit Asymmetry to First Period

1. $T_{\text {assumed }}$
2. Mapping events
3. Fit asymmetry to first period

Extract amplitude $A \propto$ Polarisation

Find Correct Spin Tune

- Vary $T_{\text {assumed }}$ and repeat steps 1 to 3

1. $T_{\text {assumed }}$
2. Mapping events
3. Fit asymmetry to first period

- Plot extracted parameter A vs $v_{\text {assumed }}$

- $v_{\text {max }}$ is correct spine tune in macroscopic time interval (2s)
- $v_{\max }=0.160975 \pm 10^{-6}$
- c_{3} is given after one of the solenoid, and c_{3}^{*} after another

Model function:

$$
\begin{aligned}
\Phi= & \cos \pi\left(v_{0}+\Delta v_{s}\left(y_{+}, y_{-}\right)\right)-\cos \pi v_{0}= \\
- & {\left[\left(E+\cos \pi v_{0}\right) \sin ^{2}\left(\frac{y_{+}}{2}\right)+\frac{1}{2} \sin \pi v_{0}\left(c_{3}+c_{3}^{*}\right) \sin y_{+}+\right.} \\
& \left.\left(E-\cos \pi v_{0}\right) \sin ^{2}\left(\frac{y_{-}}{2}\right)+\frac{1}{2} \sin \pi v_{0}\left(c_{3}-c_{3}^{*}\right) \sin y_{-}\right]
\end{aligned}
$$

- for a guidance:

$$
\Phi \simeq-\pi \Delta v_{S} \sin \pi v_{0} \propto y_{+}^{2}, y_{-}^{2}
$$

- $E \approx \cos \frac{\pi\left(v_{1}-v_{2}\right)}{2} \approx 1$ is related to the difference of horizontal spin phase advances in the arcs
- The theory tells

$$
v_{1}-v_{2} \sim O\left(c^{2}\right)
$$

- The extremum of Φ is a saddle point at

$$
y_{+}, y_{-}=O\left(c_{3}, c_{3}^{*}\right)
$$

- With solenoids only we are not sensitive to c_{1}, c_{1}^{*}
- Once v_{0} has been determined, only c_{3} and c_{3}^{*} are the fit parameters

[^0]: «RF Wien filter in an electric dipole moment storage ring: The "partially frozen spin" effect». William M. Morse,

