Towards JEDI@COSY: systematic studies of spin dynamics in preparation for the EDM searches

March 10, 2015 | DPG | Artem Saleev for the JEDI Collaboration

Forschungszentrum Jülich, Germany
Landau Institute for Theoretical Physics, Russia
Samara State University, Russia
Outline

• Exploring the COSY ring for Electric Dipole Moment (EDM) studies (JEDI - Jülich Electric Dipole moment Investigations)

• Imperfection background to EDM spin precession

• Mapping the spin tune with static solenoids

• Summary
Cooler Synchrotron COSY in Jülich

RF Devices for Spin Manipulations

EDDA Polarimeter

Solenoids

Polarized Protons / Deuterons

Electron Cooler

Momentum up to 3.7 GeV/c,

Circumference 184 m
Spin Motion in Storage Ring

- **Thomas BMT eqn. for the Magnetic Dipole Moment (MDM)**

\[
\frac{d\vec{S}}{dt} = \vec{S} \times \vec{\Omega}_{MDM}
\]

\[
\vec{\Omega}_{MDM} = \frac{q}{m} \left(G \vec{B} - \left(G - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} - \frac{G\gamma}{\gamma + 1} \vec{\beta} (\vec{\beta} \cdot \vec{B}) \right)
\]

Spintune := Number of spin turns relative to particle turns, for the ideal pure magnetic ring like COSY:

\[
\nu_s := \frac{|\vec{\Omega}_{MDM}|}{\omega_{\text{rev}}} = \frac{q}{m} \frac{GB}{q/m/\gamma B} = \gamma G
\]

10. March 2015

a.saleev@fz-juelich.de
Spin Precession by EDM in Pure Magnetic Ring

- If particle has \(d \neq 0 \), T-BMT equation takes form
 \[
 \frac{d \v{S}}{dt} = -\frac{q}{m} \left(G \v{B} + \eta (\v{\beta} \times \v{B}) \right) \times \v{S}(t)
 \]
- Interaction of the EDM with the motional E-field tilts the stable spin axis:
 \[
 \v{n}_{co} = (\v{e}_x \sin \xi + \v{e}_y \cos \xi)
 \]
 \[
 \tan \xi = -\frac{\eta}{G} \beta, \quad \eta = d \frac{m}{q}
 \]
- The JEDI Collaboration aims at a first direct measurement of the deuteron and proton Electric Dipole Moment (EDM) at COSY
- JEDI looks forward to the RF E-field induced EDM rotation without excitation of the coherent betatron oscillations. Example: RF Wien-Filter, EDM signal comes from ring

10. March 2015

a.saleev@fz-juelich.de
Imperfection In-plane Fields

- A current task for JEDI: exploring the EDM dynamics and systematic limitations of the EDM searches at all magnetic rings

- Misalignment of any magnetic elements produces the in-plane imperfection magnetic fields

- Imperfection spin kicks perturb \vec{n}_{co}:
 \[\vec{n}_{co} = (\vec{e}_x c_1 + \vec{e}_y c_2 + \vec{e}_z c_3) \]

- The nonvanishing c_1 and c_3 generate a background to the EDM-signal of the ideal imperfection-free case
 \[c_1 = \sin \xi, \quad c_3 = 0 \]

- The challenge is to control background (for example with the accuracy $c_1 \sim 10^{-6} \text{ rad}$ would amount to sensitivity for $d = 10^{-20} \text{ e} \cdot \text{cm}$)
EDDA Polarimeter

• **Left-Right** asymmetry
 ⇒ *vertical* polarization
 \[P_V \propto \epsilon_{ver} = \frac{N_l - N_r}{N_l + N_r} \]

• **Up-Down** asymmetry
 ⇒ *horizontal* polarization
 \[P_H \propto \epsilon_{hor} = \frac{N_{up} - N_{dn}}{N_{up} + N_{dn}} \]
Spin Tune Measurement

- Spin vector precesses with $f_{\text{Spin}} = \nu_s f_{\text{rev}}$ in the horizontal plane around spin closed orbit

- Asymmetry is given by:

$$\epsilon_{\text{hor}}(t) = \frac{N_{\text{up}} - N_{\text{dn}}}{N_{\text{up}} + N_{\text{dn}}} \approx AP(t) \sin(2\pi \nu_s f_{\text{rev}} t + \phi)$$

- What do we expect? (Deuterons, $p = 0.97$ GeV/c)
 \[\nu_s \approx 0.16, \quad f_{\text{rev}} = 750 \text{ kHz}\]
 - Spin precession frequency: $\nu_s \cdot f_{\text{rev}} \approx 120$ kHz

- Special spin tune analysis software resolves ν_s with an accuracy 10^{-8} in 1-second interval
Spin Tune Response to the Artificial Imperfections

- The spin tune is perturbed by small spin kicks $\sim a$ in the ring imperfection fields:
 \[\nu_0 = G\gamma + O(a^2) \]
- The idea is to probe the in-plane imperfection fields by introducing well-known artificial imperfections.
- Apply artificial imperfections: spin kicks χ_1 and χ_2 by the compensation solenoids in e-coolers, located in both straight sections,
 \[\nu_s = \nu_0 + O(c_3^2, (c_3^*)^2, \chi_1^2, \chi_2^2) \]
- Measure the spin tune shift w.r.t. applied spin kicks,
 \[\Delta \nu_s(\chi_1, \chi_2) = \nu_s(\chi_1, \chi_2) - \nu_0 \]
Measurement of Spin Tune Shift

- Spin tune shift registered in the data analysis:

\[\Delta v_s = 3.01072(66) \times 10^{-6} \]

- The spin tune shift was observed at \(t = [20, 45] \) s

1. Assume the values \(v_s \sim 0.16 \).
2. Fit \(A \) to asymmetry \(\epsilon_{\text{horr}} \).
The Spin Tune Mapping

Take multiple measurements with different χ_1, χ_2 and build a spin tune map $\Delta \nu_s(\chi_1, \chi_2)$:

Equal step size for χ_1, χ_2

$\Delta \chi = 0.002$

- Spin tune shift w.r.t. the solenoid spin kicks, $\Delta \nu_s \sim \chi_1^2$, $\Delta \nu_s \sim \chi_2^2$
The Spin Tune Mapping

- If the kicks are translated to:
 \[y_+ = \frac{1}{2}(\chi_1 + \chi_2) \quad y_- = \frac{1}{2}(\chi_1 - \chi_2) \]
- then
 \[\Delta \nu_s \propto -(y_- - a_-)^2, \quad \Delta \nu_s \propto (y_+ - a_+)^2 \]
- The distributions of the data points in \(y_\pm\) dimension share common parabolic features: equal curvature and extremum \(a_\pm\)
- It is a sign that the solenoids work as anticipated:
 \[\Delta \nu_s(y_- = \text{const}) \]
 \[y_- = 9.25 \text{ mrad} \]
 \[y_- = 3.7 \text{ mrad} \]
Imperfection Strength

- Position of the saddle point measures projections of SCO, c_3 and c_3^*
- Strength of imperfection fields in the ring is at the level of $\approx 3 \text{ Tmm}$
- For an ideal ring, the saddle point would be at $a_{\pm} = 0$

The fitted saddle point at #:

\[
\begin{align*}
a_+ &= -0.00111077 \pm 6.1 \cdot 10^{-8} \text{ rad} \\
a_- &= 0.00244326 \pm 2.1 \cdot 10^{-7} \text{ rad} \\
c_3 &= -0.00299124 \pm 1.8 \cdot 10^{-7} \\
c_3^* &= -0.00163653 \pm 7.1 \cdot 10^{-8}
\end{align*}
\]
The technique of spin tune measurement appears as a precision tool for the systematic analysis of the ring imperfections.

First high precision measurement of the imperfection fields at COSY.

The ultimate goal of the JEDI: to understand the EDM dynamics in storage rings as a prerequisite to the construction of the dedicated storage ring for the EDM searches.
More Details About Spin Tune Analysis
Mapping the Events

1. Assume Spin Tune $\nu_{assumed}$

 $T_{assumed} = \frac{2\pi}{\nu_{assumed} f_{rev}}$

2. Map all events of a macroscopic time interval (2s) in first period:
 $t' = \text{mod}(t, T_{assumed})$

3. Fit asymmetry to first period
Fit Asymmetry to First Period

1. T_{assumed}

2. Mapping events

3. Fit asymmetry to first period

$f(\phi_s) = A \cdot \sin(\phi_s + \phi_0)$

$\chi^2/ndf = 18.4/17$

$A = 0.27 \pm 0.01$

$\phi_0 = 1.36 \pm 0.04$

Extract amplitude $A \propto \text{Polarisation}$
Find Correct Spin Tune

1. T_{assumed}
2. Mapping events
3. Fit asymmetry to first period

- Vary T_{assumed} and repeat steps 1 to 3
- Plot extracted parameter A vs ν_{assumed}

- ν_{max} is correct spine tune in macroscopic time interval (2 s)
- $\nu_{\text{max}} = 0.160975 \pm 10^{-6}$

March 2015

a.saleev@fz-juelich.de
• c_3 is given after one of the solenoid, and c_3^* after another

• Model function:

$$\Phi = \cos \pi (\nu_0 + \Delta \nu_s (y_+, y_-)) - \cos \pi \nu_0 =$$
$$- \left[(E + \cos \pi \nu_0) \sin^2 \left(\frac{y_+}{2}\right) + \frac{1}{2} \sin \pi \nu_0 (c_3 + c_3^*) \sin y_+ +
(E - \cos \pi \nu_0) \sin^2 \left(\frac{y_-}{2}\right) + \frac{1}{2} \sin \pi \nu_0 (c_3 - c_3^*) \sin y_- \right]$$

• for a guidance:

$$\Phi \approx -\pi \Delta \nu_s \sin \pi \nu_0 \propto y_+^2, y_-^2$$

• $E \approx \cos \frac{\pi (\nu_1 - \nu_2)}{2} \approx 1$ is related to the difference of horizontal spin phase advances in the arcs

• The theory tells

$$\nu_1 - \nu_2 \sim O(c^2)$$
• The extremum of Φ is a saddle point at
 \[y_+, y_- = O(c_3, c_3^*) \]

• With solenoids only we are not sensitive to c_1, c_1^*

• Once ν_0 has been determined, only c_3 and c_3^* are the fit parameters