Determination of the Invariant Spin Axis in a COSY model using Bmad

M. Vitz, A. Lehrach and J. Pretz, Institut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich, Germany, also at III. Physikalisches Institut B, RWTH Aachen University, 52056 Aachen, Germany on behalf of the JEDI Collaboration

Motivation

The Electric Dipole Moment (EDM) is a fundamental property of a particle, similar to the Magnetic Dipole Moment (MDM). As a source of \mathcal{P} and \mathcal{T} violation $(\stackrel{\mathcal{P} \mathcal{T}}{=} \mathcal{C P}$ violation) it is closely connected to matter/antimatter asymmetry [1].

As it has an impact on the spin rotation, the EDM of charged particles can be measured in a storage ring by determining the radial tilt of the ISA $\vec{n}_{\text {ISA }}$ (Invariant Spin Axis)

Additionally, systematic effects $\phi_{\text {Ring }}, \xi_{\text {Ring }}$ caused by magnet misalignments etc. have to be disentangled from a potential EDM signal. Solenoidal fields $\xi_{\text {sol }}$ can directly influence the longitudinal tilt of the ISA.

$$
\begin{gathered}
\vec{n}_{\text {ISA, ideal }}=\left(\begin{array}{c}
\sin \phi_{\mathrm{EDM}} \\
\cos \phi_{\mathrm{EDM}} \\
0
\end{array}\right) \approx\left(\begin{array}{c}
\phi_{\mathrm{EDM}} \\
1 \\
0
\end{array}\right) \\
\vec{n}_{\text {ISA, real }} \approx\left(\begin{array}{c}
\phi_{\mathrm{EDM}}+\phi_{\text {Ring }} \\
1 \\
\xi_{\text {Sol }}+\xi_{\text {Ring }}
\end{array}\right)
\end{gathered}
$$

Invariant Spin Axis

Methodology

A determination of the tilt of the ISA was performed at the storage ring COSY (Cooler Synchrotron) in Jülich by the JEDI (Jülich Electric Dipole moment Investigations) collaboration for the first measurement of the deuteron EDM.

To measure the tilt of radial and longitudinal ISA simultaneously, the so-called RF (Radio-Frequency) Wien filter, an RF device with radial electric E_{x}^{WF} and vertical magnetic field B_{y}^{WF} was implemented into COSY.

While the orbit in the center of this device is not perturbed, as the fields are set up so that the Lorentz force is zero, the particles receive a phase dependend spin kick each turn. The Wien filter is changing its fields on one of the harmonics k of the spin precession frequency ν_{s}

$$
\begin{aligned}
& E_{x}^{\mathrm{WF}}=E_{0} \cos \left(2 \pi f_{\mathrm{COSY}}\left|k+\nu_{s}\right|+\phi_{\text {rel }}\right) \\
& B_{y}^{\mathrm{WF}}=B_{0} \cos \left(2 \pi f_{\mathrm{COSY}}\left|k+\nu_{s}\right|+\phi_{\text {rel }}\right) .
\end{aligned}
$$

Using this device, the EDM signal can accumulate over time, resulting in a build-up of vertical polarization P_{y} if the Wien filter runs on resonance $[2,3]$.

The build-up $\epsilon \propto \frac{d}{d t} P_{y}(t)$ depends on the orientation of ISA $\vec{n}_{I S A}$ to the Wien filter fields \vec{n}_{WF} and the longitudinal fields by solenoids. By rotating the Wien filter is by an angle ϕ_{WF} around the beam it can be matched to the radial tilt of the ISA.

$$
\begin{aligned}
\epsilon^{2}\left(\phi_{\mathrm{WF}}, \xi_{\mathrm{SOI}}\right) & \propto\left|\vec{n}_{\mathrm{WF}} \times \vec{n}_{\mathrm{ISA}}\right|^{2}=\left|\left(\begin{array}{c}
\phi_{\mathrm{WF}} \\
1 \\
0
\end{array}\right) \times\left(\begin{array}{c}
\phi_{\mathrm{EDM}}+\phi_{\text {Ring }} \\
1 \\
\xi_{\mathrm{Sol}}+\xi_{\text {Ring }}
\end{array}\right)\right|^{2} \\
& =\left(\left(\phi_{\mathrm{EDM}}+\phi_{\text {Ring }}\right)-\phi_{\mathrm{WF}}\right)^{2}+\left(\xi_{\mathrm{Sol}}+\xi_{\text {Ring }}\right)^{2}
\end{aligned}
$$

The dependence of the build-up ϵ on ϕ_{WF} and $\xi_{\text {Sol }}$ is summarized by the EDM resonance map. Its minimum indicates the tilt of the ISA at the position of the Wien filter

Another method to determine the longitudinal ISA can be used complementary. By observing the spin tune changes $\Delta \nu_{s}$ in dependency of the solenoidal strength $B_{\text {sol }}$ the projection of the longitudinal ISA $c_{\text {sol }}$ at position of the solenoid as well as the solenoid calibration factor $k_{\text {sol }}$, giving the relation between solenoidal field $B_{\text {Sol }}$ and spin kick $\xi_{\text {sol }}=k_{\text {sol }} \cdot B_{\text {Sol }}$ can be measured [4].

$$
\Delta \nu_{s}=-\frac{1}{\pi}\left(\cot \left(\pi \nu_{s}\right)\left(\cos \frac{k_{\text {sol }} B_{\text {Sol }}}{2}-1\right)\right)-c_{\text {sol }} \sin \frac{k_{\text {sol }} B_{\text {Sol }}}{2} .
$$

References

[1] A. Sakharov, "Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe JETP Lett. Vol. 5, 1967, pp. 24-27, doi:10.1070/PU1991v034n05ABEH002497.
[2] F. Rathmann, A. Saleev, and N. N. Nikolaev, "The search for electric dipole moments of light ions in storage rings", Journal of Physics: Conference Series, Vol. 45, 2014, pp. 229-233
[3] J. Slim et al., "Electromagnetic Simulation and Design of a Novel Waveguide RF Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 828, 2016, pp. 116-124
[4] A. Saleev et al., "Spin tune mapping as a novel tool to probe the spin dynamics in storage rings", Physical Review Accelerators and Beams 20, 2017, 072801
[5] D. C. Sagan, "Bmad: A relativistic charged particle simulation library", Nuclear Instruments and Methods in Physics Research A, Vol. 558, 2006, pp. 356-359

EDM Resonance Map and Solenoid Calibration

The measurement of the tilt of the ISA to determine the deuteron EDM was performed in 2018 and 2020 in the so-called precursor runs.

As a simulation is needed to disentangle a potential EDM signal from systematics a Bmad simulation using all known magnet strengths, misalignments and other systematic effects was written. By implementing the Wien filter an EDM resonance map was calculated [5].

During the precursor runs also the projection of the longitudinal ISA was measured experimentally by performing solenoid calibrations. Two different solenoid have been used. One was the SnakeSolenoid (lower right graph), which also contributed to the EDM resonance map, the other one was the so-called the $\mathbf{2 M e V}$-Solenoid (lower left graph).

Method	ϕ_{WF}	ξ_{SN}	c_{SN}	$c_{\text {SO }}$
Precursor Experiments	$-2.91(8) \mathrm{mrad}$	$-5.22(7) \mathrm{mrad}$	$-0.0612(9) \mathrm{mrad}$	$-0.0585(5) \mathrm{mrad}$

Unfortunately, simulation and experimental results differ by one order of magnitude. Reasons could be the inaccuracy of the COSY model to describe orbit and tune precisely, or the need for correction factors when the beam passes the devices with an angle.

Correction Factors

For an ideal lattice, the parameter $\phi_{\mathrm{WF}}, \xi_{\mathrm{SN}}, c_{\mathrm{SN}}$ and c_{SO} are in perfect agreement with the tilt of the ISA $n_{\mathrm{WF}, \mathrm{x}}, n_{\mathrm{WF}, \mathrm{z}}, n_{\mathrm{SN}, \mathrm{z}}$ and $n_{\mathrm{SO}, \mathrm{z}}$ at their position. In case the lattice is distorted, a correction has to be applied.

This was investigated by giving an ideal lattice a random vertical perturbation via vertical steerers. The parameters were then compared with the real tilt of the ISA at their position for different sets of vertical perturbations.

As expected, this correction depends on the vertical angle when passing through the devices. This is quite logical, as it reflects a transformation to the particles reference frame.

From a simulation point of view, it is now under investigation, whether further corrections are needed, if the horizontal orbit gets distortet additionally.

