Spin tune mapping at COSY
Artem Saleev on behalf of JEDI Collaboration
Institute of Nuclear Physics - Forschungszentrum Jülich

Motivation: Systematics at EDM searches

- Magnetic Dipole Moment of particle is much greater than its Electric Dipole Moment
- High precision spin tune: a tool to quantify the systematic effects due to Magnetic Dipole Moment

Method: Spin tune mapping

- Two solenoids at COSY switched on
- Spin tune map $\Delta \psi_s(\chi_+, \chi_-)$ consists of the spin tune measurements $\psi_s(\chi_1, \chi_2)$ on the mesh $\chi_1 \times \chi_2$ of solenoid’s spin kicks
- Build the map of spin tune shifts $\Delta \psi_s$

Scheme for experiment

- Solenoids on at ΔT_2
- Solenoids off at $\Delta T_1, \Delta T_3$

Results: Spin tune map of COSY

- Spin tune shift $\Delta \psi_s$ from nominal value ψ_s is resolved with precision $\delta \psi_s = 3.2 \cdot 10^{-9}$
- Angular precision $2.8 \mu rad$ to the direction of stable spin axis \vec{c} achieved – very sensitive probe of systematics!

Spin phase analysis

- Deviation of measured spin phase from assumed value

Spin tune map

- A feature: saddle point – non-zero location is a sign of systematic effects

$\chi_{\pm} = \frac{1}{2}(\chi_1 \pm \chi_2)$