

Search for Electric Dipole Moments with Polarized Beams in Storage Rings

Paolo Lenisa Università di Ferrara and INFN - Italy

PSTP 2013 - Charlottesville, Virginia, Sept. 9th-13th

Electric Dipoles

Definition

Charge separation creates an electric dipole

• Orders of magnitude

P H		Atomic physics
	Charges	e
	r ₁ -r ₂	10 ⁻⁸ cm
H ₂ O molecule: permanent EDM (degenerate GS w/ different	EDM (naive) exp.	10 ⁻⁸ e cm
	observed	H ₂ O molecule 4·10 ⁻⁹ e cm
Parity)		

P. Lenisa

ī

EDM of fundamental particles

Molecules have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite partiy and cannot have EDM

Unless P and T reversal are violated

 $\vec{\mu}$: magnetic dipole moment \vec{d} : electric dipole moment (both aligned with spin)

P. Lenisa

Permanent EDMs violate P and T Assuming CPT to hold, CP violated also

CP violation

- .Universe dominated by matter (and not anti-matter).
 - $(n_B n_{\bar{B}})/n_{\gamma} = 6 \times 10^{-10}$
- Equal emounts of matter and antimatter at the Big Bang.
 - CP violation in SM: 10⁻¹⁸ expected

•1967: 3 Sacharov conditions for baryogenesis

- Baryon number violation
- C and CP violation
- Thermal non-equilibrium

New sources of CP violation beyond SM needed

Could manifest in EDM of elementary particles

Carina Nebula (Largest-seen star-birth regions in the galaxy)

Theoretical predictions

Experimental limits

- EDM searches: only upper limits yet (in $e \cdot cm$) E-fields accelerate charged part. \rightarrow search limited to neutral systems
 - "Traditional" approach: precession frequency measurement in B and E fields

Experimental limits

- EDM searches: only upper limits yet
- E-fields accelerate charged part. \rightarrow search limited to neutral systems
 - "Traditional" approach: precession frequency measurement in B and E fields

(Till now) two kinds of experiments to measure EDMs:

- Neutrons
- Neutral atoms (paramagnetic/diamagnetic)

No direct measurement of electron or proton EDM yet

EDM of charged particles: use of storage rings

PROCEDURE

- Place particles in a storage ring
- Align spin along momentum (\rightarrow freeze horizontal spin precession)
- Search for time development of vertical polarization

Search for EDM in Storage Rings

Frozen spin method

Spin motion is governed by Thomas-BMT equation:

 $\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s}$ $\vec{\Omega} = \frac{e\hbar}{mc} \left[\vec{G}\vec{B} + \left(\vec{G} - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{1}{2} \eta (\vec{E} + \vec{v} \times \vec{B}) \right]$

$$ec{d}=\etarac{e\hbar}{2mc}ec{S},\quad ec{\mu}=2(G+1)rac{e\hbar}{2m}ec{S},\quad G=rac{g-2}{2}$$

d: electric dipole moment μ : magnetic dipole moment

Two options to get rid of terms \propto G (magic condition):

1. Pure E ring (works only for G>0, e.g proton):

$$\left(G-\frac{1}{\gamma^2-1}\right)=0$$

2. Combined E.B ring (works also for G<0, e.g deuteron)

$$-G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} = 0$$

Storage ring projects

Two projects: US (BNL or FNAL) and Europe (FZJ)

Feasibility requirements

• POLARIMETER

- The sensitivity to polarization must by large (0.5).
- The efficiency of using the beam must be high (> 1%).
- Systematic errors must be managed (< 10⁻⁶).

N.P.M. Brantjes et al. NIMA 664, 49 (2012)

- POLARIZED BEAM
 - Polarization must last a long time (> 1000 s).
 - Polarization must remain parallel to velocity.
- ELECTRIC FIELD, as large as practical (no sparks).
- PROTON BEAM POSITION MONITORS (<10 nm)
- SYSTEMATIC ERROR PLAN

Systematics

- One major source:
 - Radial B_r field mimics EDM effect
 - Example: $d = 10^{-29}$ e cm with E = 10 MV/m
 - If $\mu B_r \approx dE_r$ this corresponds to a magnetic field:

$$B_r = \frac{dE_r}{\mu_N} = \frac{10^{-22} eV}{3.1 \cdot 10^{-8} eV/T} \approx 3 \cdot 10^{-17} T$$

• (Earth magnetic field = $5 \cdot 10^{-5}$ T)

Solution

- Use two beam running clockwise and counterclockwise.
- Separation of two beams sensitive to B

EDM buildup time

• Minimal detectable precession $\vartheta \approx 10^{-6}$ rad

• Assuming $d \approx 10^{-29} e \cdot cm$ E = 17 MV/m

$$\vartheta_{EDM} = \frac{2dE}{\hbar} \sim 5 \left(10^{-9} \, rad/_S \right) t$$

$$\vartheta_{EDM} \sim \frac{10^{-15} rad}{turn}$$

$$1 \, turn \sim 10^{-6} \, s$$

• 10⁹ turns needed to detect EDM signal

P. Lenisa

• Spin aligned with velocity for $\pm 1000 \text{ s}$ ($\rightarrow \text{ spin coherence time next slides})$

Feasibility studies @ COSY

COoler SYnchrotron (FZ-Jülich, GERMANY)

- Momentum: <3.7 GeV/c
- Circumference: 183 m
- Polarized proton and deuteron
- Beam polarimeter (EDDA detector)
- Instrumentation available for manipulation of

- beam size (electron/stochastic cooling, white noise)

- polarization (RF solenoid)

EDDA beam polarimeter

- Beam moves toward thick target → continuous extraction
- Elastic scattering (large cross section for d-C)

Spin coherence time

4

- Spin coherence along \hat{n}_{co} is not an issue

At injection all spin vectors aligned (coherent)

P. Lenisa

Search for EDM in Storage Rings

Spin coherence time

In EDM machine observation time is limited by SCT.

Decoherence: where does it arise?

LONGITUDINAL PHASE SPACE

Problem: beam momentum spread ($\Delta p/p \neq 0 \rightarrow \Delta v_s/v_s \neq 0$) • *E.g.* $\Delta p/p=1.10^{-4} \rightarrow \Delta v_s/v_s=2.1\times 10^{-5} \rightarrow \tau_{pol}=63 \text{ ms}$

Solution: use of bunched beam ($\langle \Delta p/p \rangle = 0$)

P. Benati et al. Phys. Rev. ST, 049901 (2013)

TRANSVERSE PHASE SPACE

Problem: beam emittance $\neq 0 \rightarrow$ betatron oscillations

 Δx (Δy) from reference orbit

 \rightarrow Longer path:

 \rightarrow Higher particle speed $\rightarrow \Delta \nu_{s}$

• E.g. $\theta = 1 \cdot mrad \rightarrow \tau_{pol} = 9.9 \, s$

RF-E

Possible solution to this problem investigated at COSY

Preparing a longitudinal polarized beam with RF-solenoid

Measurement of the horizonthal SCT

No frozen spin: polarization rotates in the horizonthal plane at 120 kHz

- DAQ synchronized with cyclotrhon frequency -> count turn number N
- Compute total spin-precession angle (with spin-tune $v_s = G\gamma$)
- Bin by phase around the circle
- Compute asymmetry in each bin

Derivation of horizontal spin coherence time

phase of total spin precession angle

Spin coherence time extracted from numerical fit

Performance

-0.5

0

20

40

60

80

100 from Dennis Eversmann

Beam emittance studies

Beam preparation

- Pol. Bunched deuteron beam at p=0.97 GeV/c
- Preparation of beam by electron cooling.
- Selective increase of horizontal emittance
 - · Heating through white noise

Quadratic dependence of spin tune on size of horizonthal betatron oscillation

Measurement at COSY

Beam emittance affects spin-coherence time

Lengthening the SCT by COSY sextupoles

Use of 6-poles where β_{x} function is maximal

Results

A = original effect

a = sextupole effect

Compensation by means of 6-pole fields:

 $1/\tau_{SCT} = A < \theta^2_x > + a < \theta^2_x >$

Choose a= -A

Different horizontal profile widths

- Different slopes
- Zero crossing indep. of width

Sextupole fields can be used to increase τ_{SCT} !

Conclusions

- Non-zero EDM within the actual experimental limits clear probe of new physics
- Polarized beam in Storage Rings might pave the way to first direct measurement of EDM of charged particles.
- Technical challenges for the EDM experiment in Storage Ring.
 - Long Spin Coherence Time.
- At the COSY ring dedicated feasibility tests are underway.
 - SCT studies on a real machine
 - Emittance affects SCT of the stored beam.
 - Sextupole field can be effectively used to increase SCT.
- .Further developments:
 - Measurement repetition in y axis inhibithed by vertical machine acceptance
 - Compensation of $(\langle \Delta P/P \rangle)^2$ with the same principle
 - Test of spin-tracking codes on the real measurement

Spin coherence time collaboration

Z. Bagdasarian¹, P. Benati², S. Bertelli², D. Chiladze^{1,3}, J. Dietrich³, S. Dimov^{3,4}, D. Eversmann⁵, G. Fanourakis⁶, M. Gaisser³, R. Gabel³, B. Gou³, G. Guidoboni², V. Hejny³, A. Kacharava³, V. Kamerdzhiev³, P. Kulessa⁷, A. Lehrach³, <u>P. Lenisa²</u>, Be. Lorentz³, L. Magallanes⁸, R. Maier³, D. Michedlishvili^{1,3}, W. M. Morse⁹, A. Nass³, D. Öllers^{2,3}, A. Pesce², A. Polyanskiy^{3,10}, D. Prasun³, J. Pretz⁵, F. Rathmnann³, Y. K. Semertzidis⁹, V. Schmakova^{3,4}, <u>E. J. Stephenson¹¹</u>, H. Stockhorst³, H. Ströher³, R. Talman¹², Yu. Valdau^{3,13}, Ch. Weideman^{2,3}, P. Wüstner¹⁴.

¹Tbilisi State University, Georgia ²University and/or INFN of Ferrara, Italy ³IKP Forschungszentrum Jülich, Germany ⁴JINR, Dubna, Russia ⁵III. Physikalisches Institut RWTH Aachen, Germany ⁶Institute of Nuclear Physics NCSR Democritos, Athens, Greece ⁷Jagiellonian University, Krakow, Poland ⁸Bonn University, Germany ⁹Brookhaven National Laboratory, New York, USA ¹⁰Institute of Theoretical and Experimental Physics, Moscow, Russia ¹¹Center for Exploration of Energy and Matter, Indiana University, Bloomington, USA ¹²Cornell University, New York, USA ¹³Petersburg Nuclear Physics Institute, Gatchina, Russia ¹⁴ZEL Forschungszentrum Jülich, Germany