

Charged Particles Electric Dipole Moment Searches in Storage Rings

Paolo Lenisa Università di Ferrara and INFN - Italy

MESON 2016 - Krakow, Poland, June 4th 2016

Electric Dipoles

Charge separation creates an electric dipole

• Orders of magnitude

		Atomic physics
	Charges	е
	r ₁ -r ₂	1 Å = 10 ⁻⁸ cm
H ₂ O molecule: permanent EDM (degenerate GS of different Parity)	naive expectation	10 ⁻⁸ e cm
	observed	water molecule 2·10 ⁻⁸ e cm

P. Lenisa

T

EDM of fundamental particles

Molecules have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite partiy and cannot have EDM

Unless P and T reversal are violated

μ: magnetic dipole momentd: electric dipole moment

P. Lenisa

Permanent EDMs violate P and T Assuming CPT to hold, CP is violated also

Matter-Antimatter asymmetry

• Equal emounts of matter and antimatter at the Big Bang.

•Universe dominated by matter.

•1967: 3 Sacharov conditions for baryogenesis

- Baryon number violation
- C and CP violation
- Thermal non-equilibrium

- New sources of CP violation beyond SM to explain this discrepancy
- They could manifest in EDM of elementary particles

Carina Nebula (Largest-seen star-birth regions in the galaxy)

EDM: hystory and limits

Why charged particles EDMs?

• No direct measurements for charged particles exist;

EDM of charged particles: use of storage rings

PROCEDURE

- Place particles in a storage ring
- Align spin along momentum (\rightarrow freeze horizontal spin precession)
- Search for time development of vertical polarization

Requirements

• POLARIMETER

- The sensitivity to polarization must by large (0.5).
- The efficiency of using the beam must be high (> 1%).
- Systematic errors must be managed (< 10-6).

N.P.M. Brantjes et al. NIMA 664, 49 (2012)

- POLARIZED BEAM
 - Polarization must last a long time (> 1000 s).
 - Polarization must remain parallel to velocity.

• LARGE ELECTRIC FIELDS (E=10 MV/m).

• SYSTEMATIC ERROR PLAN

Systematics

One major source:

- Radial B_r field mimics EDM effect
- Example: $d = 10^{-29}$ e cm with E = 10 MV/m
- If $\mu B'_r \approx dE_r$ this corresponds to a magnetic field:

$$B_r = \frac{dE_r}{\mu_N} = \frac{10^{-22} eV}{3.1 \cdot 10^{-8} eV/T} \approx 3 \cdot 10^{-17} T$$

• (Earth magnetic field = $5 \cdot 10^{-5}$ T)

Solution

- Use two beam running clockwise and counterclockwise.
- Separation of two beams sensitive to B

BPM with relative resolution < 10 nm required

• use of SQUID magnetomers $(fT/\sqrt{Hz})? \rightarrow Study @ FZJ$

Search for EDM in Storage Rings

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} + \frac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

 Ω : angular precession frequency γ : Lorentz factor d: electric dipole moment G: anomalus magnetic moment

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{\theta}{m} [G\vec{B} + \left(G - \frac{1}{\sqrt{2}-1}\right)\vec{v} \times \vec{E} + \frac{m}{\theta s} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

Ω: angular precession frequency γ: Lorentz factor d: electric dipole moment G: anomalus magnetic moment

Dedicated ring:	pure electric field, freeze horizontal spin motion: (G1)=0
	only possible if $G>0$ (proton)

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + (G - \frac{1}{\sqrt{2}-1})\vec{v} \times \vec{E} + \frac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

Ω: angular precession frequency γ: Lorentz factor d: electric dipole moment G: anomalus magnetic moment

combined E/B ring (e.g. deuteron):

 $G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} = 0$

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + (G - \frac{1}{\sqrt{2}})\vec{v} \times \vec{E} + \frac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

Ω: angular precession frequency γ: Lorentz factor d: electric dipole moment G: anomalus magnetic moment

COSY: access to EDM d via motional electric field v×B RF - E and B fields to suppress GB contribution

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{\theta}{m} [G\vec{B} + (G - \frac{1}{\gamma^2 - 1})\vec{v} \times \vec{E} + \frac{m}{\theta \cdot s} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

Ω: angular precession frequency γ: Lorentz factor d: electric dipole moment G: anomalus magnetic moment

COSY:

pure magnetic ring, access to EDM d via motional electric field v×B RF - E and B fields to suppress GB contribution

neglecting EDM term: spin-tune = γG

Summary of different options

	Advantage	Disadvantage
1. Pure magnetic ring	Existing (COSY upgrade)	Lower sensitivity
2. Pure electric ring	No B field	Only p
3. Combined ring	Works for p, d, ³ He	Both E and B required

COoler Synchrotron (FZ-Jülich, GERMANY)

• COSY provides polarized protons and deuterons with p = 0.3-3.7 GeV/c

Ideal starting point for charged particles EDM search

Search for EDM in Storage Rings

COoler SYnchrotron (FZ-Jülich, GERMANY)

- Momentum: <3.7 GeV/c
- Circumference: 183 m
- Polarized proton and deuteron
- Beam polarimeter (EDDA detector)
- Instrumentation available for manipulation of polarization (RF solenoid)

Experimental tests at COSY

• Inject and accelerate polarized deuterons to 1 GeV/c

Experimental tests at COSY

- Inject and accelerate polarized deuterons to 1 GeV/c
- Flip spin in the horizontal plane with help of solenoid

Experimental tests at COSY

- Inject and accelerate polarized deuterons to 1 GeV/c
- Flip spin in the horizontal plane with help of solenoid
- Extract slowly (100 s) beam on target
- Measure asymmetry and determine spin precession

EDDA beam polarimeter

- Beam moves toward thick target continuous extraction
- Elastic scattering (large cross section for d-C)

Spin-precession measurement

Results: spin coherence time

• Short Spin coherence time:

• Long Spin coherence time:

- Unbunched beam:
 - $\Delta p/p=10^{-5} \rightarrow \Delta \gamma/\gamma=2 \times 10^{-6}$, $T_{rev}=10^{-6}s$
 - Decoherence after < 1s
- Bunching eliminates 1^{st} order effect in $\Delta p/p$:
 - $SCT \tau = 20 s$

- Betatron oscillations cause variation of orbit length
 - Correction wit sextupoles
- SCT τ = 400 s

Spin-tune

• Spin tune $v_s = \gamma G$ = nb. of spin rotations/nb. of particle revolutions

• Deuterons: p_d = 1 GeV/c (γ =1.13), G = - 0.14256177 (72) -> v_s = $\gamma G \approx$ - 0.161

Search for EDM in Storage Rings

Results: Spin-tune measurement

• Precision: 10^{-10} in one cycle of 100 s (angle precision: $2\pi \times 10^{-10} = 0.6$ nrad)

It can be used as a tool to investigate systematic errors
Feedback system to keep polarization aligned with momentum in a dedicated ring or at with respect to RF Wien filter (-> next slides)

Application: Spin feedback system

• Simulation of an EDM experiment using μ :

The goal: first direct measuerement of deuteron EDM with RF-technique

$$ec{\Omega} = rac{e\hbar}{mc} \left(egin{matrix} G ec{B} + rac{1}{2} egin{matrix} \eta ec{v} imes ec{B} \end{pmatrix}$$

Pure magnetic ring (existing machines)

Problem: precession caused by magnetic moment:. - 50 % of time longitudinal polarization || to momentum - 50 % of time is anti-||

E* in particle rest frame tilts spin (due to EDM) up and down

 \rightarrow No net EDM effect

The goal: first direct measuerement of deuteron EDM with RF-technique

Pure magnetic ring (existing machines)

Solution; use of resonant "magic" Wien-filter in ring (E+v×B=0)

- F*=0 \rightarrow particle trajectory not affected B*≠0
 - \rightarrow magnetic moment is influenced

 \rightarrow net EDM effect can be observed! \rightarrow No net EDM effect

Operation of "magic" RF Wien filter

• Oscillating radial E and B fields.

RF-Wien filter

\Rightarrow E_R= - $\gamma \times B_{\gamma}$ "Magic RF Wien Filter" no Lorentz force

- Avoids coherent betatron oscillations of.
- First direct measurement at COSY.
- Prototype commissioning in 2015
- New RF stripline Wien filter to be installed at COSY beginning of 2017.

Simulations and Projections

- EDM signal is build-up of vertical polarization
- Radial magnetic field mimic same build-up
 - Eg: misalignments of quadrupoles cause unwanted Br
- Run simulations to understand systematics effects
- General problem: track 10⁹ particles for 10⁹ turns!

- · Orbit RMS Δy_{RMS} is a measure of misalignments
- \cdot Random misalignments from 1 μm to 1 mm
- \cdot η = 10^{-5} corresponds to EDM of 5 x 10^{-20} e cm

Summary and Outlook

- EDMs high sensitive probes of CP violation.
- Storage ring and polarization technology pave the way to charged particle EDM.
- First promising results at COSY:
 - Spin coherence time:
 - Spin tune measurement:
 - Spin feedback system:
 - Simulations:

few hundred seconds. 10⁻¹⁰ in 100 s. allows to control spin. to understand systematics.

- Goal: first direct measurement of deuteron EDM in 2018-19
- Technical design report for a dedicated machine.

•2016 - ERC - AdG "EDM - search in Storage rings"

- Consortium:
 - FZJ (prof. H. Stroeher)
 - RWTH Aachen (prof. J. Praetz)
 - University of Ferrara (prof. P. Lenisa)

P. Lenisa

Electrostatic electron ring

- First ever DIRECT measurement of electron EDM.
- Compact
 - Magic energy for electron: 14.5 MeV (γ =29.4) E = 2-6 MeV/m $\rightarrow 2\pi R$ = 50 20 m
- Technical challenge, modest investment.
 - ≈ 15 (± 5) M€
 - ≈ 20 FTE
- Mandatory step for larger machines (proton and deuteron $\rightarrow 2\pi R > 250$ m).

Search for EDM in Storage Rings