

Search for Electric Dipole Moments with Polarized Beams in Storage Rings

Paolo Lenisa Università di Ferrara and INFN - Italy

LNS. November 20 th 2013

Electric Dipoles

Charge separation creates an electric dipole

• Orders of magnitude

Н		Atomic physics	
+	Charges	e	
	r ₁ -r ₂	10 ⁻⁸ cm	
H ₂ O molecule: permanent EDM	EDM (naive) exp.	10 ⁻⁸ e cm	
	observed	H ₂ O molecule 2·10 ⁻⁹ e cm	

 \vec{J}

EDM of fundamental particles

Molecules have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite partiy and cannot have EDM

Unless P and T reversal are violated

 $\vec{\mu}$: magnetic dipole moment \vec{d} : electric dipole moment (both aligned with spin)

$$H = -\mu \vec{\sigma} \cdot \vec{B} - d\vec{\sigma} \cdot \vec{E}$$
$$\mathcal{T}: H = -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{E}$$
$$\mathcal{P}: H = -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{E}$$

Permanent EDMs violate P and T Assuming CPT to hold, CP violated also

P. Lenisa

CP violation

- .Universe dominated by matter (and not anti-matter).
 - $(n_B n_{\bar{B}})/n_{\gamma} = 6 \times 10^{-10}$
- Equal emounts of matter and antimatter at the Big Bang.
 - CP violation in SM: 10⁻¹⁸ expected

•1967: 3 Sacharov conditions for baryogenesis

- Baryon number violation
- C and CP violation
- Thermal non-equilibrium

New sources of CP violation beyond SM needed

Could manifest in EDM of elementary particles

Carina Nebula (Largest-seen star-birth regions in the galaxy)

Theoretical predictions

P. Lenisa

J.M. Pendlebury: "nEDM has killed more theories than any other single expt."

EDM searches: state of the art

- EDM searches: only upper limits yet E-fields accelerate charged part. \rightarrow search limited to neutral systems
 - "Traditional" approach: precession frequency measurement in B and E fields

EDM searches: state of the art

- EDM searches: only upper limits yet E-fields accelerate charged part. \rightarrow search limited to neutral systems
 - "Traditional" approach: precession frequency measurement in B and E fields

(Till now) two kinds of experiments to measure EDMs:

- Neutrons
- Neutral atoms (paramagnetic/diamagnetic)

No direct measurement of electron or proton EDM yet

Ongoing/planned Searches

Molecules Rough estimate of numbers -200 of researchers, in total YbF@Imperial 60 ~500 (with some overlap) Neutrons PbO@Yale @ILL ThO@Harvard Atoms @ILL,@PNPI - HfF+@JILA Hg@UWash Q. @PSI - Xe@Princeton WC@UMich @FRM-2 Xe@TokyoTech PbF@Oklahoma @RCNP,@TRIUMF Xe@TUM @SNS Xe@Mainz **@J-PARC** Cs@Penn Cs@Texas - Fr@RCNP/CYRIC – Rn@TRIUMF lons Muons Ra@ANL nowl -200 Ra@KVI @FZJ Yb@Kyoto Solids @FNAL -10 - GGG@Indiana @JPARC ferroelectrics@Yale

EDM of charged particles: use of storage rings

PROCEDURE

- Place particles in a storage ring
- Align spin along momentum (\rightarrow freeze horizontal spin precession)
- Search for time development of vertical polarization

Search for EDM in Storage Rings

Frozen spin method

Spin motion is governed by Thomas-BMT equation:

 $\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s}$ $\vec{\Omega} = \frac{e\hbar}{mc} \left[\vec{G}\vec{B} + \left(\vec{G} - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{1}{2} \eta (\vec{E} + \vec{v} \times \vec{B}) \right]$

$$ec{d}=\etarac{e\hbar}{2mc}ec{S},\quad ec{\mu}=2(G+1)rac{e\hbar}{2m}ec{S},\quad G=rac{g-2}{2}$$

d: electric dipole moment μ : magnetic dipole moment

Two options to get rid of terms \propto G (magic condition):

1. Pure E ring (works only for G>O, e.g proton):

$$\left(G-\frac{1}{\gamma^2-1}\right)=0$$

2. Combined E.B ring (works also for G<0, e.g deuteron)

$$-G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} = 0$$

Storage ring projects

Two projects: US (BNL or FNAL) and Europe (FZJ)

Magic Storage rings

A magic storage ring for protons (electrostatic), deuterons, ...

Particle	p(GeV/c)	E(MV/m)	B(T)	R(m)
Proton	0.701	16.789	0.000	~ 25

Possible to measure p, d, ³He using ONE machine with $r \sim 30$ m

Statistical sensitivity

$$\sigma \approx \frac{\hbar}{\sqrt{NfT\tau_P}PEA}$$

Е	Electric field	10 MV/m
Ρ	Beam polarization	0.8
Α	Analyzing power	0.6
Ν	Particles/cycle	4×10 ⁷
F	Detection efficiency	0.005
τ_{P}	Spin-coherence time	1000 s
Т	Running time per year	10 ⁷ s

Sensitivity: • Expected signal: σ = 10⁻²⁹ e-cm/year (\rightarrow 10⁻²⁷ e-cm/week) 3x10⁻⁹ rad/s for d= 10⁻²⁹ e-cm

•

Search for EDM in Storage Rings

Technological challenges

• SYSTEMATIC ERROR PLAN

• PROTON BEAM POSITION MONITORS (<10 nm)

Systematics

• One major source:

- Radial B_r field mimics EDM effect
- Example: $d = 10^{-29}$ e cm with E = 10 MV/m
- If $\mu B_r \approx dE_r$ this corresponds to a magnetic field:

$$B_r = \frac{dE_r}{\mu_N} = \frac{10^{-22} eV}{3.1 \cdot 10^{-8} eV/T} \approx 3 \cdot 10^{-17} T$$

• (Earth magnetic field = $5 \cdot 10^{-5}$ T)

BNL Proposal: counterpropagating beams

2 beams simultaneously rotating in an all electric ring (cw, ccw)

	CW		CCW	
Polarization (P_z)	+	—	+	_
$EDM\ (\vec{d} \times \vec{E})$	_	+	+	-
Sokolov-Ternov	_	_	+	+
Gravitation	_	+	_	+

CW & CCW beams cancels systematic effects

BPM with relative resolution < 10 nm required

• use of SQUID magnetomers (fT/\sqrt{Hz})? \rightarrow Study started at FZJ

Technological challenges

- SYSTEMATIC ERROR PLAN
- PROTON BEAM POSITION MONITORS (<10 nm)
- ELECTRIC FIELD, as large as practical (no sparks).

Electric field for magic rings

Challenge to produce large electric fields

18

Tevatron electrostatic separators

- avoids unwanted $\bar{p}p$ interactions - electrodes made from Titanium

Routine operation at 1 spark/Year at 6 MV/m (180 kV at 3 cm)

Winter 2013-14: Transfer of separator unit plus equipment from FNAL to Jülich

Development of new electrode materials and surfaces treatment

Technological challenges

- SYSTEMATIC ERROR PLAN
- PROTON BEAM POSITION MONITORS (<10 nm)
- ELECTRIC FIELD, as large as practical (no sparks).
- POLARIMETER
 - The sensitivity to polarization must by large (0.5).
 - The efficiency of using the beam must be high (> 1%).
 - Systematic errors must be managed (< 10-6).

N.P.M. Brantjes et al. NIMA 664, 49 (2012)

Technological challenges

- SYSTEMATIC ERROR PLAN
- PROTON BEAM POSITION MONITORS (<10 nm)
- ELECTRIC FIELD, as large as practical (no sparks).
- POLARIMETER
 - The sensitivity to polarization must by large (0.5).
 - The efficiency of using the beam must be high (> 1%).
 - Systematic errors must be managed (< 10⁻⁶).

N.P.M. Brantjes et al. NIMA 664, 49 (2012)

- POLARIZED BEAM
 - Polarization must last a long time (> 1000 s).
 - Polarization must remain parallel to velocity.

EDM buildup time

• Minimal detectable precession $\vartheta \approx 10^{-6}$ rad

• Assuming $d \approx 10^{-29} e \cdot cm$ E = 17 MV/m

$$\vartheta_{EDM} = \frac{2dE}{\hbar} \sim 5 \left(10^{-9} \, rad/_S \right) t$$

$$1 \, turn \sim 10^{-6} \, s$$

$$\vartheta_{EDM} \sim \frac{10^{-15} rad}{turn}$$

• 10⁹ turns needed to detect EDM signal

P. Lenisa

• Spin aligned with velocity for $\pm 1000 \text{ s} (\rightarrow Spin Coherence Time next slides)$

Feasibility studies @ COSY

COoler SYnchrotron (FZ-Jülich, GERMANY)

- Momentum: <3.7 GeV/c
- Circumference: 183 m
- Polarized proton and deuteron
- Beam polarimeter (EDDA detector)
- Instrumentation available for manipulation of

- beam size (electron/stochastic cooling, white noise)

- polarization (RF solenoid)

EDDA beam polarimeter

- Beam moves toward thick target continuous extraction
- Elastic scattering (large cross section for d-C)

Spin invariant axis

• one particle with magnetic moment makes one turn

Stable polarization if $S || n_{co}$

Spin coherence time

4

- Ensemble of particles circulating in the ring
- Spin coherence along \hat{n}_{co} is not an issue

At injection all spin vectors aligned (coherent)

Spin coherence time

- Ensemble of particles circulating in the ring
- Spin coherence along \hat{n}_{co} is not an issue

At injection all spin vectors aligned (coherent)

r some time spin vectors get ou

Vertical polarization not affected

After some time, spin vectors get out of phase and fully populate the cone

- For $\vec{S} \perp \hat{n}_{co}$ (machines with frozen spin) the situation is different

At injection all spin vectors aligned

In EDM machine observation time is limited by SCT.

Decoherence: where does it arise?

LONGITUDINAL PHASE SPACE

Problem: beam momentum spread ($\Delta p/p \neq 0 \rightarrow \Delta v_s/v_s \neq 0$) • *E.g.* $\Delta p/p=1.10^{-4} \rightarrow \Delta v_s/v_s=2.1\times 10^{-5} \rightarrow \tau_{pol}=63 \text{ ms}$

Solution: use of bunched beam ($\langle \Delta p/p \rangle = 0$)

P. Benati et al. Phys. Rev. ST, 049901 (2013)

TRANSVERSE PHASE SPACE

Problem: beam emittance $\neq 0 \rightarrow$ betatron oscillations

 Δx (Δy) from reference orbit

 \rightarrow Longer path:

 \rightarrow Higher particle speed $\rightarrow \Delta \nu_{s}$

• E.g. $\theta = 1 \cdot mrad \rightarrow \tau_{pol} = 9.9 s$

RF-E

Possible solution to this problem investigated at COSY

Preparing a longitudinal polarized beam with RF-solenoid

Polarimetry of precessing horizontal polarization

No frozen spin: polarization rotates in the horizonthal plane at 120 kHz

- DAQ synchronized with cyclotrhon frequency -> count turn number N
- Compute total spin-precession angle (with spin-tune $v_s = G\gamma$) • Bin by phase around the circle

Derivation of horizontal spin coherence time

phase of total spin precession angle

Spin coherence time extracted from numerical fit

Performance

from Dennis Eversmann

Beam emittance studies

Beam preparation

- Pol. Bunched deuteron beam at p=0.97 GeV/c
- Preparation of beam by electron cooling.
- Selective increase of horizontal emittance
 - · Heating through white noise

Quadratic dependence of spin tune on size of horizonthal betatron oscillation

Beam emittance affects spin-coherence time

Lengthening the SCT by COSY sextupoles

Use of 6-poles where β_{x} function is maximal

Results

- 10⁹ particles synchronously precessing for > 2x10⁸ revolutions!
- Previous best 10⁷ @ Novosibirsk

MILESTONE FOR THE FIELD!

Sextupole fields can be used to increase τ_{SCT} !

APPENDIX: Precursor experiments RF methods

Pure magnetic ring (existing machines)

Problem: precession caused by magnetic moment:. - 50 % of time longitudinal polarization || to momentum - 50 % of time is anti-||

E* in particle rest frame tilts spin (due to EDM) up and down

 \rightarrow No net EDM effect

APPENDIX: Precursor experiments RF methods

Principle: make spin prec. in machine resonant with orbit motion

Two ways:

- 1. Use of RF device operating at some harmonics of the spin prec. frequency
- 2. Ring operation on an imperfection resonance

Resonance Method with "magic" RF Wien filter

- Avoids coherent betatron oscillations of beam. ٠
- First direct measurement at COSY.

 $E^* = 0 \implies E_R = -\beta \times B_V$ "Magic RF Wien Filter" no Lorentz force

- In plane polarization
 P_y buildup during spin coherence time

Statistical sensitivity for d_d in 10^{-23} to 10^{-24} e·cm range possible. • Alignment and field stability of ring magnets

- Imperfection of RF-E(B) flipper

Operation of "magic" RF Wien filter

Radial E and vertical B fields oscillate, e.g., with $f_{HV} = (K + G\gamma) \cdot f_{rev} = -54.151 \times 10^3 \text{ Hz}$ (here K = 0).

Resonance Method for deuterons at COSY

EDM effect accumulates in P_{y}

P. Lenisa

Development: RF E/B-Flipper (RF Wien Filter)

- 1. Upgrade test flipper with electrostatic field plates (end of year).
- 2. Build lower power version using a stripline system
- 3. Build high-power version of stripline system (E > 100 kV/m)

Work by S. Mey, R. Gebel (Jülich) J. Slim, D. Hölscher (IHF RWTH Aachen)

Search for EDM in Storage Rings

Conclusions

- Non-zero EDM within the actual experimental limits clear probe of new physics
- Pol. beam in S. R. might pave the way to direct measurement of EDM of ch. particles.
- Challenges will stimulate development in Storage Ring technology.
- At the COSY ring dedicated feasibility tests are underway.
- SCT studies on a real machine
 - Emittance affects SCT of the stored beam.
 - Sextupole field can be effectively used to increase SCT.
 - Next step:
 - Compensation of $(\langle \Delta P/P \rangle)^2$ with the same principle
- The way to a Storage Ring EDM:
 - Precursor experiment
 - (Prototype electron ring?)
 - Proton/deutern storage ring
- P.S. A srEDM experiment is realatively cheap....

All electric electron-EDM storage ring

- Magic energy for electron: 14.5 MeV (γ =29.4)
- $E = 6 \text{ MeV/m} \rightarrow R = 2.5 \text{ m}$

Note:

- Electron $\rightarrow \mu_e = 5.788 \times 10^{-5} \text{ eV/T}$ $G_e = 0.001159$
- Proton $\rightarrow \mu_{\rm p}$ = 3.152 x 10⁻⁸ eV/T $G_{\rm p}$ =1.792

$$\rightarrow \frac{G_e \mu_e}{G_p \mu_p} = 1.020 \times 10^8 \text{s}^{-1}/\text{T}$$

$$\rightarrow \frac{G_p \mu_p}{\hbar} = 0.859 \times 10^8 \text{s}^{-1}/\text{T}$$

Almost same precession frequency in magnetic field

Issue: polarimetry?

Georg Christoph Lichtenberg (1742-1799)

"Man muß etwas Neues machen, um etwas Neues zu sehen."

"Devi creare qualcosa di nuovo se vuoi vedere qualcosa di nuovo"

Search for EDM in Storage Rings

Spin coherence time collaboration

Z. Bagdasarian¹, P. Benati², S. Bertelli², D. Chiladze^{1,3}, J. Dietrich³, S. Dimov^{3,4}, D. Eversmann⁵, G. Fanourakis⁶, M. Gaisser³, R. Gabel³, B. Gou³, G. Guidoboni², V. Hejny³, A. Kacharava³, V. Kamerdzhiev³, P. Kulessa⁷, A. Lehrach³, <u>P. Lenisa²</u>, Be. Lorentz³, L. Magallanes⁸, R. Maier³, D. Michedlishvili^{1,3}, W. M. Morse⁹, A. Nass³, D. Öllers^{2,3}, A. Pesce², A. Polyanskiy^{3,10}, D. Prasun³, J. Pretz⁵, F. Rathmnann³, Y. K. Semertzidis⁹, V. Schmakova^{3,4}, <u>E. J. Stephenson¹¹</u>, H. Stockhorst³, H. Ströher³, R. Talman¹², Yu. Valdau^{3,13}, Ch. Weideman^{2,3}, P. Wüstner¹⁴.

¹Tbilisi State University, Georgia ²University and/or INFN of Ferrara, Italy ³IKP Forschungszentrum Jülich, Germany ⁴JINR, Dubna, Russia ⁵III. Physikalisches Institut RWTH Aachen, Germany ⁶Institute of Nuclear Physics NCSR Democritos, Athens, Greece ⁷Jagiellonian University, Krakow, Poland ⁸Bonn University, Germany ⁹Brookhaven National Laboratory, New York, USA ¹⁰Institute of Theoretical and Experimental Physics, Moscow, Russia ¹¹Center for Exploration of Energy and Matter, Indiana University, Bloomington, USA ¹²Cornell University, New York, USA ¹³Petersburg Nuclear Physics Institute, Gatchina, Russia ¹⁴ZEL Forschungszentrum Jülich, Germany

P. Lenisa

Precursor experiments: 1. Resonance Method for deuterons at COSY

Linear extrapolation of P_y for a time period of $\tau_{sc} = 1000 \text{ s} (= 3.7 \cdot 10^8 \text{ turns})$ yields a sizeable $P_y \sim 10^{-3}$.

All-in-one machine (R. Talmans concept)

Maximum achievable field of copper magnets ~0.15 T.

	Particle	p(GeV/c)	T(GeV)	E(MV/m)	B(T)
<i>r</i> = 10 m	Proton	855.3	331.3	6.8	-0.005
	Deuteron	381.0	38.3	-1.3	-0.015
	³ He	739.8	95.8	13.240	-0.050

Very compact machines seem possible for srEDM searches

CCW & CCW with magnetic field: Concept for a Jülich all-in-one machine

Iron-free, current-only, magnetic bending, eliminates hysteresis

2. Resonant EDM measurement with static Wien Filter

Machine operated on imperfection spin resonance at $\gamma G = 2$

Similar accumulation of EDM signal, systematics more difficult, strength of imperfection resonance must be suppressed by closed-orbit corrections.

Measurement of the horizonthal SCT

No frozen spin: polarization rotates in the horizonthal plane at 120 kHz

- DAQ synchronized with cyclotrhon frequency -> count turn number N
- Compute total spin-precession angle (with spin-tune $v_s = G\gamma$)
- Bin by phase around the circle

phase of total spin

precession angle

Compute asymmetry in each bin

Derivation of horizontal spin coherence time

Amplitude vs time

Spin coherence time extracted from numerical fit