

Search for Electric Dipole Moments with Polarized Beams in Storage Rings

Paolo Lenisa Università di Ferrara and INFN - Italy

LNF, November 11th 2014

Motivation

Electric Dipoles

$$p = q \cdot s$$

Charge separation creates an electric dipole

• Orders of magnitude

Н		Atomic physics
+	Charges	e
	r ₁ -r ₂	10 ⁻⁸ cm
H ₂ O molecule: permanent EDM	EDM (naive) exp.	10 ⁻⁸ e cm
	observed	H ₂ O molecule 2·10 ⁻⁹ e cm

 \vec{d}

Electric Dipoles

 $p = q \cdot s$

Charge separation creates an electric dipole

Orders of magnitude ٠

Н		Atomic physics	Hadron physics	
+ H-O	Charges	e	e	$\approx 10^{-13} \text{cm}$
	r ₁ -r ₂	10 ⁻⁸ cm	10 ⁻¹³ cm	
H ₂ O molecule: permanent EDM	EDM (naive) exp.	10 ⁻⁸ e cm	10 ⁻¹³ e cm	
	observed	H ₂ O molecule 2·10 ⁻⁹ e cm	Neutron < 3·10 ⁻²⁶ e cm	EDM 3·10 ⁻²⁶ e cm → charge separation < 5·10 ⁻²⁶ cm between u

and d guarks

EDM of fundamental particles

Molecules have large EDM because of degenerate ground states with different parity

Elementary particles (including hadrons) have a definite partiy and cannot have EDM

Unless P and T reversal are violated

µ: magnetic dipole moment
d: electric dipole moment
(both aligned with spin)

$$H = -\mu \vec{\sigma} \cdot \vec{B} - d\vec{\sigma} \cdot \vec{E}$$
$$\mathcal{T}: H = -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{E}$$
$$\mathcal{P}: H = -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{E}$$

Permanent EDMs violate P and T Assuming CPT to hold, CP violated also

CP violation

- Universe dominated by matter (and not anti-matter): $\frac{n_B n_{\overline{B}}}{n_{\nu}} = 6 \cdot 10^{-10}$
- Equal emounts of matter and antimatter at the Big Bang.
 - CP violation in SM: 10⁻¹⁸ expected
- •1967: 3 Sacharov conditions for baryogenesis
 - Baryon number violation
 - C and CP violation
 - Thermal non-equilibrium
- New sources of CP violation beyond SM needed
- Could manifest in EDM of elementary particles

Theoretical predictions

No Standard Model Background!

J.M. Pendlebury: "nEDM has killed more theories than any other single expt."

7

Sources of CP violation

J. de Vries

EDM searches: state of the art

- EDM searches: only upper limits yet E-fields accelerate charged part. \rightarrow search limited to neutral systems
 - "Traditional" approach: precession frequency measurement in B and E fields

EDM searches: state of the art

- EDM searches: only upper limits yet
- E-fields accelerate charged part. → search limited to neutral systems
- "Traditional" approach: precession frequency measurement in B and E fields

(Till now) two kinds of experiments to measure EDMs:

- Neutrons
- Neutral atoms (paramagnetic/diamagnetic)

EDM searches: state of the art

- EDM searches: only upper limits yet
- E-fields accelerate charged part. → search limited to neutral systems
 - "Traditional" approach: precession frequency measurement in B and E fields

Particle/Atom	Current EDM Limit	Future Goal	~ d_n equivalent
Electron	< 8.9 × 10 ⁻²⁹		
Neutron	< 3 × 10 ⁻²⁶	~10 ⁻²⁸	10-28
¹⁹⁹ Hg	< 3.1 × 10 ⁻²⁹	~10 ⁻²⁹	10-26
¹²⁹ Xe	< 6 × 10 ⁻²⁷	~10 ⁻³⁰ - 10 ⁻³³	~10 ⁻²⁶ - 10 ⁻²⁹
-> Proton	< 7.9 × 10 ⁻²⁵	~10 ⁻²⁹	10-29
Deuteron	?	~10 ⁻²⁹	3 × 10 ⁻²⁹ - 5 × 10 ⁻⁵¹

No direct measurement of electron or proton EDM yet

Measurement of charged particles EDM

EDM of charged particles: use of storage rings

PROCEDURE

- Place particles in a storage ring
- Align spin along momentum (\rightarrow freeze horizontal spin precession)
- Search for time development of vertical polarization

Frozen spin method

Spin motion is governed by Thomas-BMT equation:

 $\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s}$ $\vec{\Omega} = \frac{e\hbar}{mc} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} + \frac{1}{2}\eta(\vec{E} + \vec{v} \times \vec{B})]$

$$ec{d}=\etarac{e\hbar}{2mc}ec{S},\quad ec{\mu}=2(G+1)rac{e\hbar}{2m}ec{S},\quad G=rac{g-2}{2}$$

d: electric dipole moment μ : magnetic dipole moment

Two options to get rid of terms $\propto G$ (magic condition):

1. Pure E ring (works only for G>0, e.g proton):

$$\left(G-\frac{1}{\gamma^2-1}\right)=0$$

2. Combined E.B ring (works also for G<0, e.g deuteron)

$$-G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} = 0$$

Storage ring projects

pEDM in all electric ring at BNL

CW and CCW propagating beams

Jülich, focus on deuterons, or a combined machine

Two projects: US (BNL) and Europe (FZJ)

Statistical sensitivity

$$\sigma_{stat} = \frac{h}{\sqrt{NF}\tau_P PAE}$$

Е	Electric field	10 MV/m
Ρ	Beam polarization	0.8
A	Analyzing power	0.6
Ν	Particles/cycle	4×10 ¹⁰
F	Detection efficiency	0.005
$ au_{P}$	Spin-coherence time	1000 s
Т	Running time per year	10 ⁷ s

Sensitivity: • Challenge:

•

 $\sigma_{\rm stat}$ = 10⁻²⁹ e-cm/year (\rightarrow 10⁻²⁷ e-cm/week) bring $\sigma_{\rm syst}$ at the same level

Technological challenges

- SYSTEMATIC ERROR PLAN
- PROTON BEAM POSITION MONITORS (<10 nm)

Systematics

One major source:

- Radial B_r field mimics EDM effect
 Example: d = 10⁻²⁹ e cm with E = 10 MV/m
- If $\mu B_r \approx dE_r$ this corresponds to a magnetic field:

$$B_r = rac{dE_r}{\mu_N} = rac{10^{-22} eV}{3.1 \cdot 10^{-8} eV/T} pprox 3 \cdot 10^{-17} T$$

• (Earth magnetic field = $5 \cdot 10^{-5}$ T)

Use of two counterpropagating beams

- Solution:
 - Use two beams running clockwise and counterclockwise
 - Separation of the two beams proportional to Br

BPM with relative resolution < 10 nm required
use of SQUID magnetomers (fT/√Hz)? → Study started at FZJ

Technological challenges

- SYSTEMATIC ERROR PLAN
- PROTON BEAM POSITION MONITORS (<10 nm)
- ELECTRIC FIELD, as large as practical (no sparks).

Electric field for magic rings

Challenge to produce large electric fields

Tevatron electrostatic separators

avoids unwanted *pp* interactions
electrodes made from Titanium

Routine operation at 1 spark/Year at 6 MV/m (180 kV at 3 cm)

Summer 2014: Separator unit plus equipment transferred from FNAL to Jülich

Development of new electrode materials and surfaces treatment

Technological challenges

- SYSTEMATIC ERROR PLAN
- PROTON BEAM POSITION MONITORS (<10 nm)
- ELECTRIC FIELD, as large as practical (no sparks).
- POLARIMETER
 - The sensitivity to polarization must by large (0.5).
 - The efficiency of using the beam must be high (> 1%).
 - Systematic errors must be managed (< 10-6).

N.P.M. Brantjes et al. NIMA 664, 49 (2012)

Technological challenges

- SYSTEMATIC ERROR PLAN
- PROTON BEAM POSITION MONITORS (<10 nm)
- ELECTRIC FIELD, as large as practical (no sparks).
- POLARIMETER
 - The sensitivity to polarization must by large (0.5).
 - The efficiency of using the beam must be high (> 1%).
 - Systematic errors must be managed (< 10⁻⁶).

N.P.M. Brantjes et al. NIMA 664, 49 (2012)

- POLARIZED BEAM
 - Polarization must last a long time (> 1000 s).
 - Polarization must remain parallel to velocity.

Results of first test measurements

COoler Synchrotron (FZ-Jülich, GERMANY)

• COSY provides polarized protons and deuterons with p = 0.3-3.7 GeV/c

Ideal starting point for charged particles EDM search

Spin coherence time τ_{sc}

Request for EDM experiment: τ_{sc} > 1000 s

Decoherence: where does it arise?

LONGITUDINAL PHASE SPACE

Problem: beam momentum spread ($\Delta p/p \neq 0 \rightarrow \Delta v_s/v_s \neq 0$) • E.g. $\Delta p/p=1.10^{-4} \rightarrow \Delta v_s/v_s=2.1\times 10^{-5} \rightarrow \tau_{pol}=63 \text{ ms}$

Solution: use of bunched beam ($\Delta p/p > = 0$)

P. Benati et al. Phys. Rev. ST, 049901 (2013)

TRANSVERSE PHASE SPACE

Problem: beam emittance $\neq 0 \rightarrow$ betatron oscillations

 $\Delta x (\Delta y)$ from reference orbit

 \rightarrow Longer path: $\frac{\Delta L}{L} = \frac{\theta_x^2 + \theta_y^2}{4}$

- \rightarrow Higher particle speed $\rightarrow \Delta v_s$
 - E.g. $\theta = 1 \cdot mrad \rightarrow \tau_{pol} = 9.9 s$

RF-E

Possible solution to this problem investigated at COSY.

Experimental setup

- Inject and accelerate vertically polarized deuterons to 1 GeV/c
- Flip spin with a help of the solenoid in the horizontal plane
- Spins start to precess
- Extract beam slowly on target (100 s)
- Measure asymmetry and determine spin precession

Polarimeter

elastic deuteron-carbon scattering Up/Down asymmetry \propto horizontal polarization $\rightarrow \nu_s = \gamma G$ Left/Right asymmetry \propto vertical polarization $\rightarrow d$

 $N_{up,dn} \propto 1 \pm PA \sin(\nu_s f_{rev} t), \quad \nu_s f_{rev} \approx 125 \, \text{kHz}$

Results: spin-coherence time measurement

 $1/\tau_{SCT} = A \langle \theta^2_x \rangle + a \langle \theta^2_x \rangle$ A = original effect a = sextupole effect

Choose a= -A

- 10⁹ particles synchronously precessing for >4×10⁸ revolutions!
- Previous best 10⁷ @ Novosibirsk

MILESTONE FOR THE FIELD!

It has been demonstrated that the spin-coherence time may be extended up to 1000 s through

- Beam bunching
- Electron cooling
- Orbit corrections with 6-poles families

This meets the requirements for a storage ring to search for an EDM!

Spin tune: $v_s = \gamma G$

Results: spin tune measurement

- Spin tune can be determined to $\approx 10^{-8}$ in 2s Average v_s in cycle (≈ 100 s) determined to 10^{-10} $v_s \approx \gamma G$ varies within one cycle (and from cycle to cycle) $\approx 10^{-8}$

Experiment	Gedankenexperiment
$G \approx -0.14, d \approx 0$	$G = 0, d = 10^{-24} e \mathrm{cm}$
$\nu_s = \gamma \mathbf{G} = -0.16$	$ u_s = rac{vm\gamma d}{es} = 5 \cdot 10^{-11}$

Outlook

Precursor experiment with RF methods

Pure magnetic ring (existing machines)

Problem: precession caused by magnetic moment:. - 50 % of time longitudinal polarization || to momentum - 50 % of time is anti-||

E* in particle rest frame tilts spin (due to EDM) up and down

 \rightarrow No net EDM effect

OUTLOOK: Precursor experiments with RF methods

Principle: make spin prec. in machine resonant with orbit motion

Two ways:

- 1. Use of RF device operating at some harmonics of the spin prec. frequency
- 2. Ring operation on an imperfection resonance

Resonance Method with "magic" RF Wien filter

- Avoids coherent betatron oscillations of beam. . •
- First direct measurement at COSY.

 \Rightarrow E_R= - γ × B_y "Magic RF Wien Filter" no Lorentz force

- In plane polarization
 P_y buildup during spin coherence time

Operation of "magic" RF Wien filter

Radial E and vertical B fields oscillate,

Situation

- Non-zero EDM within the actual experimental limits clear probe of new physics
- Pol. beam in S. R. might pave the way to direct measurement of EDM of ch. particles.
- Challenges will stimulate development in Storage Ring technology.

- At the COSY ring dedicated feasibility tests are underway.
 - SCT studies on a real machine
 - Spin-tune measurements with unprecedented precision
- The way to a Storage Ring EDM:Precursor experiment

 - (Electrostatic lectron ring?)
 - Proton/deutern storage ring

Electrostatic electron ring

- First ever DIRECT measurement of electron EDM.
- Compact
 - Magic energy for electron: 14.5 MeV (γ=29.4)
 E = 2-6 MeV/m → 2πR = 50 20 m
- Technical challenge, modest investment.
 - ≈ 15 (± 5) M€
 - ≈ 20 FTE
- Mandatory step for larger machines (proton and deuteron $\rightarrow 2\pi R > 250$ m).

Search for EDM in Storage Rings

Workshop on Electron Storage Ring for EDM studies Schloss Waldthausen (Mainz), 23-24 February, 2015

Organizers:

- K. Aulenbacher (Mainz) P. Lenisa (Ferrara)
- F. Rathmann (Jülich)

Spare slides

Costs

Building

7 M€ for a new building.
2 M€ for modification of an existing building.

Polarized pre-accelerator to 15 MeV:

Polarized electron source (0.3 M€) (experienced personnel required) Standard acc.-section (S-Band, 3 GHz, length ~ 5 m) driven by pulsed Klystron. Standard pre-injector and spin-rotator;

4.0 M€

Electrostatic ring (50 m circumference) with low gradient (<2 MV/m).

UHV vacuum and deflecting systems: 2 M€ (40 k€/m); Beam diagnostics, injection kickers, power supplies, polarimetry etc: 3 M€ Magnetic shielding 2 M€

7 M€.

Total Investment: 13-18 M€

Manpower

Management:
Lattice design:
Beam dynamics and spin-tracking simulations:
Polarized source:
Acceleration system:
Electrostatic lattice design:
Beam diagnostics (BPM, SQUID) and polarimetry
RF system:
Magnetic shielding:

Total

Search for EDM in Storage Rings

Ongoing/planned Searches

Molecules Rough estimate of numbers -200 of researchers, in total YbF@Imperial 50 ~500 (with some overlap) Neutrons - PbO@Yale @ILL ThO@Harvard Atoms @ILL,@PNPI – HfF+@JILA - Hg@UWash Q. @PSI - Xe@Princeton – WC@UMich @FRM-2 Xe@TokyoTech PbF@Oklahoma @RCNP,@TRIUMF Xe@TUM @SNS Xe@Mainz **@J-PARC** Cs@Penn Cs@Texas - Fr@RCNP/CYRIC – Rn@TRIUMF lons Muons – Ra@ANL **NOM** -200 Ra@KVI @FZJ Yb@Kyoto Solids @FNAL -10 - GGG@Indiana **@JPARC** - ferroelectrics@Yale

300-Channel SQUID Systems for Magnetoencephalography (MEG)

Development: RF E/B-Flipper (RF Wien Filter)

- Upgrade test flipper with electrostatic field plates (end of year). 1.
- 2.
- Build lower power version using a stripline system Build high-power version of stripline system (E>100 kV/m) 3.

Work by S. Mey, R. Gebel (Jülich) J. Slim, D. Hölscher (IHF RWTH Aachen)

EDDA beam polarimeter

- Beam moves toward thick target
- → continuous extraction
 - Elastic scattering (large cross section for d-C)

Spin coherence time

4

- Ensemble of particles circulating in the ring
- Spin coherence along $n \downarrow co$ is not an issue

At injection all spin vectors aligned (coherent)

Spin coherence time

- Ensemble of particles circulating in the ring
- Spin coherence along $n \downarrow co$ is not an issue

At injection all spin vectors aligned (coherent)

Vertical polarization not affected

After some time, spin vectors get out of phase and fully populate the cone

- For $S \perp n \downarrow co$ (machines with frozen spin) the situation is different

At injection all spin vectors aligned

In EDM machine observation time is limited by SCT.

Preparing a longitudinal polarized beam with RF-solenoid

Polarimetry of precessing horizontal polarization

No frozen spin: polarization rotates in the horizonthal plane at 120 kHz

- DAQ synchronized with cyclotrhon frequency -> count turn number N
- Compute total spin-precession angle (with spin-tune $v_s = G_{\gamma}$)

Derivation of horizontal spin coherence time

Spin coherence time extracted from numerical fit

Performance

-0.5

from Dennis Eversmann

Beam emittance studies

Beam preparation

- Pol. Bunched deuteron beam at p=0.97 GeV/c
- Preparation of beam by electron cooling.
- Selective increase of horizontal emittance
 - · Heating through white noise

Quadratic dependence of spin tune on size of horizonthal betatron oscillation

Beam emittance affects spin-coherence time

Lengthening the SCT by COSY sextupoles

6-pole field:
$$B = kxt^2$$

 $\Delta L/L \downarrow 0 = \vartheta \downarrow xt^2 + \varphi \downarrow yt^2/4$

Spin tune spread correction

 $\Delta \nu \downarrow s = G \Delta \gamma$

Use of 6-poles where β_{x} function is maximal

EDM buildup time

Minimal detectable precession

$$\theta \approx 10^{-6}$$
 rad

- Assuming d≈10⁻²⁹ e cm E = 17 MV/m 1 turn ≈ 10⁻⁶ s
 Assuming d≈10⁻²⁹ e cm → θ_{EDM} ≈ 10⁻¹⁵ rad/turn
- 10⁹ turns needed to detect EDM signal
- Spin aligned with velocity for t>1000 s (\rightarrow Spin Coherence Time)

Feasibility studies @ COSY

Magic Storage rings

A magic storage ring for protons (electrostatic), deuterons, ...

Particle	p(GeV/c)	E(MV/m)	B(T)	R(m)
Proton	0.701	16.789	0.000	~ 25

Possible to measure p, d, ³He using ONE machine with $r \approx 30$ m