# Search for Electric Dipole Moments and Axions/ALPs at Storage Rings

#### J. Pretz

#### RWTH Aachen & FZ Jülich on behalf of the JEDI & CPEDM collaboration

erc



European Research Council



Trapped Charged Particles Conference 2022, Glashütten, September 2022

## Outline

#### Motivation

Electric Dipole Moments (EDMs) and their relation to CP violation and Matter- Antimatter - asymmetry in the universe, axions/axion-like-particles

### Experimental Method

Spin Motion in Storage Rings

#### Experimental Results & Plans

activities at Cooler Synchrotron COSY, EDM prototype storage ring

# **Motivation**

# Electric Dipole Moments (EDM)



- permanent separation of positive and negative charge
- fundamental property of particles (like magnetic moment, mass, charge)
- existence of EDM only possible via violation of time reversal T CPT CP and parity P symmetry
- close connection to matter-antimatter asymmetry
- axion field leads to oscillating EDM

# **Proton EDM**

Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update





## EDM: Current 90% Upper Limits



storage rings: EDMs of **charged** hadrons:  $p, d, {}^{3}$ He, goal:  $10^{-29}e$  cm precision

### Sources of $\mathcal{CP}$ Violation



# **Experimental Method**

## Experimental Method: Generic Idea



build-up of vertical polarization  $s_{\perp} \propto d$ , if  $\vec{s}_{horz} || \vec{p}$  (frozen spin)

## Experimental Method: Generic Idea



build-up of vertical polarization  $s_{\perp} \propto d$ , if  $\vec{s}_{horz} || \vec{p}$  (frozen spin)

### Spin Precession: Thomas-BMT Equation

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[ G\vec{B} + \left( G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2c} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$$
$$= \vec{\Omega}_{\text{MDM}} = \vec{\Omega}_{\text{EDM}}$$

electric dipole moment (EDM):  $\vec{d} = \eta \frac{q\hbar}{2mc}\vec{s}$ , magnetic dipole moment (MDM): $\vec{\mu} = 2(G+1)\frac{q\hbar}{2m}\vec{s}$ 

Note: 
$$\eta = 2 \cdot 10^{-15}$$
 for  $d = 10^{-29} e$ cm,  $G \approx 1.79$  for protons,  
 $\beta = \nu/c, \gamma = \sqrt{\frac{1}{1 - \beta^2}}$ 

# Spin Precession: Thomas-BMT Equation

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[ G\vec{B} + \left( G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2c} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$$
  
$$\vec{\Omega}_{\mathrm{MDM}} = 0, \quad \text{frozen spin} \qquad = \vec{\Omega}_{\mathrm{EDM}}$$
  
frozen spin achievable with pure electric field if  $G = \frac{1}{\gamma^2 - 1}$ ,  
works only for  $G > 0$ , e.g. proton

or with special combination of *E*, *B* fields and  $\gamma$ , i.e. momentum

# Momentum and ring radius for proton in frozen spin condition



Two options:

• Pure electric ring: p = 701 MeV/c, bending radius $\approx 50 \text{ m}$ at E=8 MV/m

★ combined prototype ring: p = 300 MeV/c, bending radius≈ 9 m at E=7 MV/m

# **Different Options**

|                        | $\odot$                         | $\odot$                                                        |
|------------------------|---------------------------------|----------------------------------------------------------------|
| 3.) pure electric ring | no $\vec{B}$ field needed,      | works only for particles                                       |
|                        | ර, ඊ beams simultaneously       | with <i>G</i> > 0 (e.g. <i>e</i> , <i>p</i> )                  |
| 2.) combined ring      | works for $e, p, d, {}^{3}He$ , | both $\vec{E}$ and $\vec{B}$                                   |
|                        | smaller ring radius             | B field reversal for $\circlearrowright$ , $\circlearrowright$ |
|                        |                                 | required                                                       |
| 1.) pure magnetic ring | COoler SYnchrotron COSY         | lower sensitivity,                                             |
|                        | can be used,                    | precession due to G,                                           |
|                        | running now                     | i.e. no <b>frozen spin</b>                                     |

## **Statistical Sensitivity**

| beam intensity              | $N = 4 \cdot 10^{10}$ per fill |
|-----------------------------|--------------------------------|
| polarization                | P = 0.8                        |
| spin coherence time         | au= 1000 s                     |
| electric fields             | E = 8  MV/m                    |
| polarimeter analyzing power | A = 0.6                        |
| polarimeter efficiency      | f = 0.005                      |

$$\sigma_{\text{stat}} \approx \frac{2\hbar}{\sqrt{Nf}\tau PAE} \Rightarrow \sigma_{\text{stat}}(1\text{year}) = 2.4 \cdot 10^{-29} \, e \cdot \text{cm}$$
  
challenge: get  $\sigma_{\text{sys}}$  to the same level

## Systematic Sensitivity

signal: 
$$\Omega_{\rm EDM} = \frac{dE}{s\hbar} = 2.4 \cdot 10^{-9} \, {\rm s}^{-1}$$
 for  $d = 10^{-29} e \, {\rm cm}$ 

• radial *B*-field of 
$$B_r = 10^{-17}$$
 T:  
 $\Omega_{B_r} = \frac{eGB_r}{m} = 1.7 \cdot 10^{-9} \text{ s}^{-1}$ 

• geometric Phases (non-commutation of rotations),  $B_{\text{long}}, B_{\text{vert}} \approx 1 \text{ nT}$ 

$$\Omega_{\rm GP} = \left(\frac{eGB}{16m}\right)^2 \, \frac{1}{f_{\rm rev}} = 3.7 \cdot 10^{-9} \, {\rm s}^{-7}$$

• General Relativity:

$$\Omega_{\rm GR} = -\frac{\gamma}{\gamma^2 + 1} \frac{\beta g}{c} = -4.4 \cdot 10^{-8} {\rm s}^{-1}$$

...

## Systematic Sensitivity

#### Remedy:

 $\Omega_{GP} + \Omega_{GR}$  drops out in sum,  $\Omega_{CW} + \Omega_{CCW}$ , effect of  $B_r$  can be subtracted by observing displacement of the two beams.

Conclusion:

Statistically one can reach sensitivity of  $\approx 10^{-29} e$  cm, many systematic effects can be controlled using  $\circlearrowleft$  and  $\circlearrowright$  beams, needs further investigation

# **Results & Plans**

# **Precursor Experiment**





# Precursor Experiment at COSY

Tools developed to manipulate and measure beam polarization:

- reaching > 1000 s spin coherence time
- measure 120 kHz spin tune precession in horizontal plane to 10<sup>-10</sup> in 100 s
- development of polarization feed back system



3 PRLs

# Precursor Experiment at COSY

Tools developed to manipulate and measure beam polarization:

- reaching > 1000 s spin coherence time
- measure 120 kHz spin tune precession in horizontal plane to 10<sup>-10</sup> in 100 s
- development of polarization feed back system



PRLS

## Precursor Experiment at COSY

Tools developed to manipulate and measure beam polarization:

- reaching > 1000 s spin coherence time
- measure 120 kHz spin tune precession in horizontal plane to  $10^{-10}$  in 100 s
- development of polarization feed back system

#### $\Rightarrow$ Single Bunch Spin Manipulation



## Observation of polarization build-up



- radio-frequency Wien filter (WF) provides partially frozen spin
- polarization build-up proportional to EDM ... and many perturbations
- perturbations are under investigation using beam and spin tracking simulations

# Axion/ALPs Searches

## Axions/Axion Like Particles (ALPs)

- hypothetical elementary particle postulated by the Peccei–Quinn to resolve the strong CP problem (Why is Θ<sub>QCD</sub> so small?)
- axion are also dark matter candidates
- axion like particles (ALP): similar properties as axions, (but ALPs don't solve the strong QCD problem)
- huge experimental effort to search for axion/ALPs (haloscopes, helioscopes, light shining through the wall, mainly coupling to photons)
- in storage rings with polarized beams axion-gluon/nucleon coupling and direct effect on spin can be studied

## Axion Searches: Back to Spin Motion in storage ring

$$\frac{d\vec{S}}{dt} = (\vec{\Omega}_{\text{MDM}} + \vec{\Omega}_{\text{EDM}} + \vec{\Omega}_{\text{wind}}) \times \vec{S}$$
  
$$\vec{\Omega}_{\text{MDM}} = -\frac{q}{m} \vec{G}\vec{B}$$
  
$$\vec{\Omega}_{\text{EDM}} = -\frac{1}{S\hbar} \frac{d}{c} \vec{\beta} \times \vec{B}$$
  
$$\vec{\Omega}_{\text{wind}} = -\frac{1}{S\hbar} \frac{C_N}{2f_a} (\hbar \partial_0 a(t)) \vec{\beta}$$
  
axion field:  $a(t) = a_0 \cos(\omega_a t + \phi_0)$   $d = d_{\text{DC}} + d_{\text{AC}} \cos(\omega_a t + \phi_0)$ 

 $d_{AC} = a_0 g_{ad\gamma}$ 

 $\hbar\omega_a = m_a c^2$ 

## Principle of storage ring axion/ALP experiment



### **First Results**



# Axion Analysis: *d*<sub>AC</sub>



• Result from many scans from previous page

• 
$$f_{AC} = \frac{1}{2\pi} \frac{m_a c^2}{\hbar} = \gamma G f_{rev}$$

## Axion Analysis: axion anomalous coupling to gluons $g_{aN\gamma}$



- blue "needle" could be longer (and thinner) if we had spent the measurment time on a single frequency.
- LOI submitted to GPAC focusing on experiments with polarized beams and/or targets at storage rings, e.g. axion/ALP searches

# Plans for a dedicated EDM ring

## Prototype Ring: Lattice & Bending Element



- operate electrostatic ring
- store  $10^9 10^{10}$  particles for 1000 s
- $\bullet\,$  simultaneous  $\circlearrowright\,$  and  $\circlearrowright\,$  beams
- frozen spin (only possible with additional magnetic bending)
- develop and benchmark simulation tools
- develop key technologies: beam cooling, deflector, beam position monitors, shielding ...
- perform EDM measurement and axion/ALP search

## Prototype Ring: Lattice & Bending Element



Research Infrastructure Concept Development: Pathfinder Facility for a new Class of **Pre**cision Physics **Sto**rage Rings (PRESTO) proposal submitted to EU Partner: INFN, GSI/FZJ, CERN, MPG, RWTH, LIV, JAG, TSU

## Summary

- EDMs are unique probe to search for new CP-violating interactions and contribute to axion/ALP searches
- charged particle EDMs can be measured in storage rings
- First steps done at Cooler Synchrotron COSY at Forschungszentrum Jülich, Germany
- Next step: Design, construction of a dedicated storage ring for EDM measurements