Towards experiments with polarized beams and targets at the GSI/FAIR storage rings

J. Pretz RWTH Aachen & FZ Jülich

Jena, SPARC Workshop, September 2022

History

- Scientists at IKP (Institut für Kernphysik) at Forschungszentrum Jülich have large experience in experiments with polarized hadron beams and targets
- Forschungszentrum Jülich decided to stop research in this area.
- There is a TransFAIR process ongoing to integrate IKP members into GSI/FAIR.
- A common LOI

"Towards experiments with polarized beams and targets at the GSI/FAIR storage ring"

has been submitted to GPAC in July 2022

Letter of Intent: Towards experiments with polarized beams and targets at the GSI/FAIR storage rings

A. Bondarev^{1,2}, R. Engels³, S. Fritzsche^{1,2,4}, R. Grisenti^{2,5}, A. Gumberidze²,
V. Hejny³, P.-M. Hillenbrand^{1,2}, A. Kacharava³, T. Krings³, A. Lehrach³,
M. Lestinsky², Yu. A. Litvinov², B. Lorentz², A. Maiorova^{1,2}, F. Maas^{6,7},
W. Middents^{1,4}, A. Nass³, T. Over^{1,4}, P. Pfäfflein^{1,2,4}, J. Pretz^{*3}, N. Petridis²,
J. Ritman^{2,13,3}, F. Rathmann³, S. Schippers^{8,9}, R. Schuch^{1,10}, M. Steck²,
Th. Stöhlker^{†1,2,4}, U. Spillmann², A. Surzhykov^{11,12}, G. Weber^{1,2}, and B. Zhu^{1,4}

Polarization Effects

Unpolarized cross section:

 $\sigma_{tot} = \sigma_o$

Polarization Effects

Polarized cross section:

$$\sigma_{tot} = \sigma_o + \sigma_{TT} \left[(\mathbf{P}^{\mathbf{d}} \cdot \mathbf{P}^{\mathbf{p}}) - (\mathbf{P}^{\mathbf{d}} \cdot \mathbf{k}) (\mathbf{P}^{\mathbf{p}} \cdot \mathbf{k}) \right] + \sigma_{LL} (\mathbf{P}^{\mathbf{d}} \cdot \mathbf{k}) (\mathbf{P}^{\mathbf{p}} \cdot \mathbf{k}) + \sigma_T T_{mn} k_m k_n + \sigma_{PV}^{p} (\mathbf{P}^{\mathbf{p}} \cdot \mathbf{k}) + \sigma_{PV}^{d} (\mathbf{P}^{\mathbf{d}} \cdot \mathbf{k}) + \sigma_{TVPV}^{T} (\mathbf{P}^{\mathbf{p}} \cdot \mathbf{k}) T_{mn} k_m k_n + \sigma_{TVPV}^{T} (\mathbf{k} \cdot (\mathbf{P}^{\mathbf{p}} \cdot \mathbf{P}^{\mathbf{d}})) + \sigma_{TVPC}^{T} k_m T_{mn} \epsilon_{nlr} P_l^p k_r$$

 \mathbf{P}^{p} : proton polarization, \mathbf{P}^{d} : deuteron vector polarization, \mathbf{T} : deuteron tensor polarization

Phys.Lett.B 811 (2020) 135983

Outline

- Study spin transfer in Radiative Electron Capture (REC)
 → Next talk: Radiative recombination of heavy highly-charged ions with
 polarized electron by Anna Maiorova
- Use ANKE target (from FZJ) at internal target station of ESR
- . . .
- Search for axion/axion like particles
- Search for a time reversal violating/parity conserving asymmetry

Axions/Axion Like Particles (ALPs)

- hypothetical elementary particle postulated by the Peccei–Quinn to resolve the strong CP problem
- axion are also dark matter candidates
- axion like particles (ALP): similar properties as axions, (but ALPs don't solve the strong QCD problem)
- huge experimental effort to search for axion/ALPs (haloscopes, helioscopes, light shining through the wall, mainly coupling to photons)
- in storage rings with polarized beams axion-gluon/nucleon coupling and direct effect on spin can be studied

Spin Motion in storage ring

with respect to momentum vector in magnetic field

$$\frac{d\vec{S}}{dt} = (\vec{\Omega}_{\text{MDM}} + \vec{\Omega}_{\text{EDM}} + \vec{\Omega}_{\text{wind}}) \times \vec{S}$$

$$\vec{\Omega}_{\text{MDM}} = -\frac{q}{m} G\vec{B} , \qquad \vec{\mu} = g \frac{q\hbar}{2m} \vec{S} = (1+G) \frac{q\hbar}{m} \vec{S}$$

$$\vec{B} \qquad \text{magnetic field}$$

$$G \qquad \text{magnetic anomaly}$$

$$g \qquad g\text{-factor}$$

$$\mu \qquad \text{magnetic moment}$$

$$S \qquad \text{spin}$$

$$q, m \qquad \text{mass, charge}$$

Spin Motion in storage ring

with respect to momentum vector in magnetic field

$$\frac{d\vec{S}}{dt} = (\vec{\Omega}_{\text{MDM}} + \vec{\Omega}_{\text{EDM}} + \vec{\Omega}_{\text{wind}}) \times \vec{S}$$

$$\vec{\Omega}_{\text{MDM}} = -\frac{q}{m} G\vec{B}$$

$$\vec{\Omega}_{\text{EDM}} = -\frac{1}{S\hbar} \frac{d c \vec{\beta} \times \vec{B}}{2f_a} (\hbar \partial_0 a(t)) \vec{\beta}$$

exign field: $a(t) = a \cos(\alpha t t + \beta)$ $d = d - d - \cos(\alpha t t + \beta)$

axion field: $a(t) = a_0 cos(\omega_a t + \phi_0)$ $d = d_{DC} + d_{AC} cos(\omega_a t + \phi_0)$ $\hbar \omega_a = m_a c^2$ $d_{AC} = a_0 g_{ad\gamma}$

Axion Experiment at storage rings

Principle of experiment

- store polarized hadrons
- maintain precession in horizontal plane
- if $m_a c^2 = \Omega_{\text{MDM}} \hbar$, polarization will turn out of the horizontal plane, resulting in a vertical polarization component
- Vertical polarization can be measured using a polarimeter (in case of deuteron: deuteron carbon scattering)
- AC measurement (i.e. systematics are under control)
- axion wind effect enhanced in storage rings ($v_{\text{particle}} \approx c$)
- one can either scan a certain mass range by scanning Ω_{MDM} or measure at a fixed frequency to look for ALP at a specific mass.

Axion Analysis: d_{AC} , results from COSY

• a few days of beam time • $f_{AC} = \frac{1}{2\pi} \frac{m_a c^2}{\hbar} = \gamma G f_{rev}$

https://arxiv.org/abs/2208.07293

How to explore a wider mass range m_a

 $\Omega_{\mathrm{MDM}} = \gamma \mathbf{G} \Omega_{\mathit{rev}}$

- modify beam energy (changes γ , Ω_{rev})
- e use different nuclei (changes G)
- Use additional electric field

$$ec{\Omega}_{ ext{MDM}} = -rac{m{q}}{m} \left[m{G} ec{m{B}} - \left(m{G} - rac{m{1}}{\gamma^2 - m{1}}
ight) rac{ec{m{eta}} imes ec{m{E}}}{m{c}}
ight]$$

Axion Searches at storage rings

Polarized proton-deuteron scattering

Search for a **time reversal violating** and **parity conserving** asymmetry in polarized proton-deuteron scattering

Electric Dipole Moments (EDM)

polarized proton-deuteron scattering

Polarized proton-deuteron scattering

polarized proton beam, tensor polarized deuteron target

$$\sigma_{tot} = \sigma_{Y,XZ} + \sigma_{loss} = \sigma_0 \left(1 + P_Y^{\text{pbeam}} P_{XY}^{\text{dtarget}} A_{Y,XZ} \right) + \sigma_{loss}, \quad \left(A_{Y,XZ} \propto \frac{\sigma_{TVPC}^T}{\sigma_0} \right)$$

Summary & Outlook

- Storage ring experiments with polarized beams/targets offer a wealth of possibilities
- LOI to GPAC submitted
- Further investigations (beam energies, error estimates, installation of sources and targets) for experiments at ESR/Cryring still needed