Electric Dipole Moment Measurements at Storage Rings

J. Pretz RWTH Aachen & FZ Jülich

UW Seattle, Nov. 2016

RWTHAACHEN UNIVERSITY

- RWTH (Rheinisch-Westfälische Technische Hochschule)
- founded in 1870
- 42 000 students (total population 250 000)
- largest technical university in Germany

RWTH (Rheinisch-Westfälische Technische Hochschule)
 founded in 1870

42 000 students (total population 250 000)
 largest technical university in Germany

largest technical university in Germany

octogone: tallest building (30m) north of the Alpes for two hundred years

- one of the largest interdisciplinary research centers in Europe
- 6000 staff members (2000 scientists)

 "Forschungszentrum Jülich works on key technologies for the grand challenges facing society in the fields of information and the brain as well as energy and environment."

Outline

Introduction & Motivation

What are EDMs?, What do we know about EDMs? Why are EDMs interesting?

Experimental Methods

How to measure charged particle EDMs?

Recent Achievements

How do manipulate and measure a polarization with high precision!

What are EDMs?

Electric Dipoles

Order of magnitude

	atomic physics	hadron physics
charges	е	
$ \vec{r}_1 - \vec{r}_2 $	1 Å= 10 ⁻⁸ cm	
EDM		
naive expectation	10 ^{−8} <i>e</i> · cm	
observed	water molecule	
	2 · 10 ^{−8} <i>e</i> · cm	

Order of magnitude

	atomic physics	hadron physics
charges	е	е
$ \vec{r}_1 - \vec{r}_2 $	1 Å= 10 ⁻⁸ cm	$1 \mathrm{fm} = 10^{-13} \mathrm{cm}$
EDM		
naive expectation	10 ^{−8} <i>e</i> · cm	$10^{-13} e \cdot cm$
observed	water molecule	neutron
	2 · 10 ^{−8} <i>e</i> · cm	$< 3 \cdot 10^{-26} e$ · cm

Operator $\vec{d} = q\vec{r}$

is odd under parity transformation $(\vec{r} \rightarrow -\vec{r})$:

 $\mathcal{P}^{-1}\vec{d}\mathcal{P}=-\vec{d}$

Consequences: In a state $|a\rangle$ of given parity the expectation value is 0:

$$\langle a | \vec{d} | a \rangle = - \langle a | \vec{d} | a \rangle = 0$$

but if $|a\rangle = \alpha | P = + \rangle + \beta | P = - \rangle$
in general $\langle a | \vec{d} | a \rangle \neq 0 \Rightarrow$ i.e. molecules

EDM of molecules

ground state: mixture of $\Psi_s = \frac{1}{\sqrt{2}} (\Psi_1 + \Psi_2), P = +$ $\Psi_a = \frac{1}{\sqrt{2}} (\Psi_1 - \Psi_2), P = -$

EDMs & symmetry breaking

Molecules can have large EDM because of degenerated ground states with different parity

EDMs & symmetry breaking

Molecules can have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite parity and cannot posses an EDM $P|had >= \pm 1|had >$

EDMs & symmetry breaking

Molecules can have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite parity and cannot posses an EDM $P|had >= \pm 1|had >$

unless

 ${\cal P}$ and time reversal ${\cal T}$ invariance are violated!

${\mathcal T}$ and ${\mathcal P}$ violation of EDM

 $\Rightarrow \mathsf{EDM} \text{ measurement tests violation of fundamental symmetries } \mathcal{P} \text{ and } \mathcal{T}(\stackrel{\mathcal{CPT}}{=} \mathcal{CP})$

-What are EDMs?

$$\square \mathcal{T}$$
 and \mathcal{P} violation of EDM

Note: EDM has to be parallel to spin.

$\mathcal{CP}-Violation$ and connection to EDMs

Standard Model		
Weak interaction		
CKM matrix	ightarrow unobservably small EDMs	
Strong interaction		
θ_{QCD}	ightarrow best limit from neutron EDM	
beyond Standard Model		
e.g. SUSY	ightarrow accessible by EDM measurements	

EDM in SM and SUSY

EDM in SM and SUSY

EDM in SM and SUSY

Connection to Cosmology: Matter-Antimatter Asymmetry

Excess of matter in the universe:

	observed	SCM* prediction
$\eta = rac{n_B - n_{ar{B}}}{n_\gamma}$	$6 imes 10^{-10}$	10 ⁻¹⁸

Sakharov (1967): \mathcal{CP} violation needed for baryogenesis

 \Rightarrow New \mathcal{CP} violating sources beyond SM needed to explain this discrepancy

They could show up in EDMs of elementary particles

* SCM: Standard Cosmological Model

What do we know about EDMs?

EDM: Current Upper Limits

EDM: Current Upper Limits

FZ Jülich: EDMs of **charged** hadrons: *p*, *d*, ³He

Sources of \mathcal{CP} Violation

J. de Vries

Why Charged Particle EDMs?

- no direct measurements for charged hadrons exist
- potentially higher sensitivity (compared to neutrons):
 - longer life time,
 - more stored protons/deuterons
- complementary to neutron EDM:

$$d_d \stackrel{?}{=} d_p + d_n \Rightarrow \text{access to } \theta_{QCD}$$

EDM of one particle alone not sufficient to identify $\mathcal{CP}-\text{violating}$ source

How to measure charged particle EDMs?

Experimental Method: Generic Idea

For **all** EDM experiments (neutron, proton, atoms, ...): Interaction of \vec{d} with electric field \vec{E} For charged particles: apply electric field in a storage ring:

build-up of vertical polarization $s_{\perp} \propto |d|$

Experimental Requirements

- high precision storage ring → systematics (alignment, stability, field homogeneity)
- high intensity beams ($N = 4 \cdot 10^{10}$ per fill)
- polarized hadron beams (P = 0.8)
- long spin coherence time ($\tau = 1000 \text{ s}$),
- large electric fields (E = 10 MV/m)
- polarimetry (analyzing power A = 0.6, acc. f = 0.005)

$$\sigma_{\text{stat}} \approx \frac{\hbar}{\sqrt{Nf}\tau PAE} \Rightarrow \sigma_{\text{stat}}(1\text{year}) = 10^{-29} \, e \cdot \text{cm}$$

challenge: get σ_{sys} to the same level

Systematics

Major source: Radial *B* field mimics an EDM effect:

- Difficulty: even small radial magnetic field, *B_r* can mimic EDM effect if :μ*B_r* ≈ *dE_r*
- Suppose $d = 10^{-29} e cm$ in a field of $E_r = 10 MV/m$

• This corresponds to a magnetic field:

$$B_r = rac{dE_r}{\mu_N} = rac{10^{-22} eV}{3.1 \cdot 10^{-8} eV/T} pprox 3 \cdot 10^{-17} T$$

Solution: Use two beams running **clockwise** and **counter clockwise**, separation of the two beams is sensitive to B_r

Systematics

Sensitivity needed: $1.25 \text{ fT}/\sqrt{\text{Hz}}$ for $d = 10^{-29} e \text{ cm}$ (possible with SQUID technology)

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E} + \frac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} [\vec{GB} + (\vec{G} - \frac{1}{q^{s-1}})\vec{V} \times \vec{E} + \frac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$
1.) pure electric ring no \vec{B} field needed, works only for particles CW/CCW beams simultaneously
2.) combined ring works for $p, d, {}^{3}\text{He}, \dots$ both \vec{E} and \vec{B} required

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} [G\vec{B} + (G + \frac{1}{q-1})\vec{v} \times \vec{E} + \frac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$
1.) pure electric ring
1.) pure electric ring
2.) combined ring
3.) pure magnetic ring
existing (upgraded) COSY
ring can be used,
shorter time scale
lower sensitivity,
precession due to *G*,
i.e. no **frozen spin**
1.) Pure Electric Ring

radius \approx 50 m, E = 8MV/m

arXiv:1502.04317, acc. for publication in Rev. Sci. Instrum. (BNL/Korea)

2.) Ring Design with E/B elements

 $|\vec{B}| = 0.46$ T, $|\vec{E}| = 12$ MV/m Y. Senichev (Jülich)

3.) EDM measurement using pure magnetic ring

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left(G\vec{B} + \frac{m}{es} d\vec{v} \times \vec{B} \right) \times \vec{s}$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

 E^* field in the particle rest frame tilts spin due to EDM up and down \Rightarrow **no net EDM effect**

3.) EDM measurement using pure magnetic ring

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left(G\vec{B} + \frac{m}{es} d\vec{v} \times \vec{B} \right) \times \vec{s}$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

 E^* field in the particle rest frame tilts spin due to EDM up and down \Rightarrow **no net EDM effect**

Use resonant "magic Wien-Filter" in ring $(\vec{E}_W + \vec{v} \times \vec{B}_W = 0)$:

 $E_W^* = 0 \rightarrow \text{part.}$ trajectory is not affected but

 $B^*_W \neq 0 \rightarrow$ mag. mom. is influenced

 \Rightarrow net EDM effect can be observed!

Buildup of vertical Polarisation

for deuterons ($G \approx -0.143$, p = 0.97GeV/c ($\beta = 0.459$)) assumed edm: $d = \eta \frac{q\hbar}{2mc}s = 5 \cdot 10^{-19}$ e·cm ($\eta = 10^{-4}$) 50000 turns \cong 38ms, ampl. of fast oscillation $\frac{\beta\eta}{2G} \approx 1.6 \cdot 10^{-4}$

-Experimental Method

Buildup of vertical Polarisation

Can be done analytically

Simulations

- EDM signal is build-up of vertical polarization
- radial magnetic fields (*B_r*) cause the same build-up
- misalignments of quadrupoles create for example unwanted B_r
- $\bullet \Rightarrow$ Run simulations to understand systematic effects
- General problem: Track 10⁹ particles for 10⁹ turns!
 (→ use transfer maps of magnet elements (code: COSY Infinity))
- orbit RMS Δy_{RMS} is measure of misalignments

Spin Tracking

Random Misalignments from $1\mu m$ to $1 mm \propto \Delta y_{RMS}$, Use of CW/CCW beams requires only relative measurement of two beams

Recent Achievements: How do manipulate and measure a polarization with high precision!

Cooler Synchrotron COSY

COSY provides (polarized) protons and deuterons with p = 0.3 - 3.7 GeV/c \Rightarrow Ideal starting point for charged hadron EDM searches

Running Conditions

COSY circumference	183 m
deuteron momentum	0.970 GeV/ <i>c</i>
$eta(\gamma)$	0.459 (1.126)
magnetic anomaly G	pprox -0.143
revolution frequency f_{rev}	752543 Hz
cycle length	100-1500 s
nb. of stored particles/cycle	pprox 10 ⁹
event rate at $t = 0$	$5000 { m s}^{-1}$

R & D at COSY

- maximize spin coherence time (SCT)
- precise measurement of spin precession (spin tune)
- polarization feed back
- spin tracking simulation tools, design of dedicated storage ring
- RF- Wien filter design and construction
- tests of electro static deflectors (goal: field strength > 10 MV/m)
- development of high precision beam position monitors
- polarimeter development

Experimental Setup at COSY

• Inject and accelerate vertically polarized deuterons to $p \approx 1 \text{ GeV}/c$

Experimental Setup at COSY

- Inject and accelerate vertically polarized deuterons to $p \approx 1 \text{ GeV}/c$
- flip polarization with help of solenoid into horizontal plane, precession starts

Experimental Setup at COSY

- Inject and accelerate vertically polarized deuterons to $p \approx 1 \text{ GeV}/c$
- flip polarization with help of solenoid into horizontal plane, precession starts
- Extract beam slowly (in \approx 100 s) on target
- Measure asymmetry and determine spin precession

Polarimeter

elastic deuteron-carbon scattering, consists of four scintillator segments: left, right, up, down

asymmetry $A_{up,down} \propto$ horizontal polarization $\rightarrow \nu_s = \gamma G$ asymmetry $A_{left,right} \propto$ vertical polarization $\rightarrow d$

Asymmetries

Polarization Flip

-Recent Achievements

Polarization Flip

Two cycles are shown!!!

Polarization Flip

-Recent Achievements

Polarization Flip

Two cycles are shown!!!

Polarization Flip

-Recent Achievements

Polarization Flip

Two cycles are shown!!!

Results: Spin Coherence Time (SCT)

unbunched beam $\Delta p/p = 10^{-5} \Rightarrow \Delta \gamma/\gamma = 2 \cdot 10^{-6}, T_{rev} \approx 10^{-6} \text{ s}$ \Rightarrow decoherence after < 1 s bunched beam eliminates 1st order effects in $\Delta p/p$ \Rightarrow SCT $\tau = 20 \text{ s}$

Results: Spin Coherence Time (SCT)

SCT of $\tau =$ 400 s, after correction with sextupoles (chromaticities $\xi \approx$ 0)

SCT: Longer Cycles

SCT: Longer Cycles

deuterons: $p_d = 1 \text{ GeV}/c$ ($\gamma = 1.13$), G = -0.14256177(72)

$$\Rightarrow \nu_{s} = \gamma G \approx -0.161$$

Spin Tune ν_s measurement

- Problem: detector rate ≈ 5 kHz, f_{spin} = 120kHz
 ⇒ only 1 hit every 25th period
- not possible to use usual χ^2 -fit
- try different algorithms, mapping, Fourier analysis, Maximum Likelihood

Fourier spectrum for 10⁶ turns

 fix ν_s at maximum and look at phase vs. turn number phase is determined for turn intervals of 10⁶ turns (≈ 1.3 s)

Results spin tune

Results spin tune

Results spin tune

Spin Tune Measurement

- relative precision 10^{-9} in one cycle of $\approx 100 \, s$
- Compare to muon g − 2: σ_{νs}/ν_s ≈ 10⁻⁶ per year main difference: measurement duration 600µs compared to 100 s
- spin rotation due to electric dipole moment:

$$\nu_s = \frac{vm\gamma d}{es} = 5 \cdot 10^{-11}$$
 for $d = 10^{-24} e$ cm (in addition rotations due to *G* and imperfections)

- spin tune measurement can now be used as tool to investigate systematic errors
- spin tune measurement allows for feedback system to keep polarization aligned with momentum vector needed for final ring (frozen spin) and Wien filter method in magnetic ring

Spin Feed back system

- polarization rotation in horizontal plane at t = 85 s
- COSY rf changed during cycle in steps of 3.7 mHz (f_{rev} =750603 Hz) according to online ν_s measurement,
- keeps phase between spin and RF solenoid constant
- solenoid (low amplitude) switched on at t = 115 s
- polarization goes back to vertical direction
- mandatory for frozen spin in dedicated ring
JEDI Collaboration

- **JEDI** = **J**ülich **E**lectric **D**ipole Moment **I**nvestigations
- ≈ 100 members
 (Aachen, Bonn, Daejeon, Dubna, Ferrara, Grenoble, Indiana, Ithaca, Jülich, Krakow, Michigan, Minsk, Novosibirsk, St. Petersburg, Stockholm, Tbilisi, ...)
- \approx 10 PhD students
- close collaboration with srEDM collaboration in US/Korea

http://collaborations.fz-juelich.de/ikp/jedi/index.shtml

Electric dipole moment

Storage ring steps up search for electric dipole moments

The JEDI collaboration aims to use a storage ring to set the most stringent limits to date on the electric dipole moments of hadrons. describe Paolo Lenisa, Jörg Pretz and Hans Ströher

The fact that we and the world around us are made of matter and onl

European Research Council

Search for electric dipole moments using storage rings PI: H. Ströher, (FZ Jülich), RWTH Aachen University, University of Ferrara Start: Oct, 1st, 2016

Summary & Outlook

- EDMs of elementary particles are of high interest to disentangle various sources of CP violation searched for to explain matter antimatter asymmetry in the Universe
- EDM of **charged** particles can be measured in **storage rings**
- Experimentally very challenging because effect is tiny
- First promising results:

spin coherence time:	pprox 1000 s
spin tune:	10 ⁻¹⁰ in 100 s
feed back system	allows to control spin
simulations	to understand systematics

Asymmetry Measurements

• Detector signal
$$N^{up,dn} \propto (1 \pm PA \sin(\gamma G\omega_{rev} t))$$

 $A_{up,dn} = \frac{N^{up} - N^{dn}}{N^{up} + N^{dn}} = PA \sin(\gamma G\omega_{rev} t)$

A: analyzing power, P : polarization

Polarimetry

Cross Section & Analyzing Power for deuterons

 $N_{up,dn} \propto (1 \pm PA \sin(
u_s \omega_{rev} t))$

$$A_{up,dn} = rac{N^{up} - N^{dn}}{N^{up} + N^{dn}} = PA \sin(
u_s \omega_{rev} t)$$

A : analyzing power P : beam polarization

Spin Tune jumps

Event Distribution

$\text{SCT} \leftrightarrow \text{Chromaticity I}$

Chromaticities vs. tune giving maximal SCT according to simulation

$\textbf{SCT} \leftrightarrow \textbf{Chromaticity II}$

Chromaticities vs. sextupole setting

$\text{SCT} \leftrightarrow \text{Chromaticity I}$

Maximal SCT for predicted sextupole setting

$\textbf{SCT} \leftrightarrow \textbf{chromaticity}$

chromaticity $\xi = \Delta Q / (\Delta p / p)$ $\langle \frac{\Delta T}{T_0} \rangle = \langle \frac{\Delta L}{L_0} \rangle - \langle \frac{\Delta \beta}{\beta_0} \rangle$ $\langle \ldots \rangle$ means time average for one particle because of bunched beam: $\langle \frac{\Delta T}{\tau_{a}} \rangle = 0$ betatron oscillations leads to $\langle \frac{\Delta L}{L} \rangle \neq 0$ $\Rightarrow \frac{\Delta\beta}{\beta_0} \neq 0 \Rightarrow \frac{\Delta\nu_s}{\nu_s} \neq 0$ sextupole settings gives access to $\left\langle \frac{\Delta L}{L_0} \right\rangle = \frac{\pi}{L_0} \epsilon_{\mathbf{X},\mathbf{y}} \xi_{\mathbf{X},\mathbf{y}}$

Spin Tune as tool to investigate systematics

- Create artificial imperfections with solenoids/steerers
- measure spin tune change Δν_s
- expectation $\Delta \nu_s \propto (y_{\pm} - a_{\pm})^2$ a_{\pm} : kicks due to imperfections, v_{\pm} : kicks due to solong

 y_{\pm} : kicks due to solenoids

parabolic behavior expected from simulations
 y[±] = (\frac{\chi_1 \pm \chi_2}{2}, \chi_{1,2}) : solenoid strength for perfect machine, minimum should be at y⁺ = 0

parabolic behavior expected from simulations
 y[±] = (\frac{\chi_1 \pm \chi_2}{2}, \chi_{1,2}) : solenoid strength for perfect machine, minimum should be at y⁺ = 0

Electron and Neutron EDM

J. M. Pendlebury & E.A. Hinds, NIMA 440(2000) 471

EDM: SUSY Limits

electron: MSSM: $\varphi \approx 1 \Rightarrow d = 10^{-24} - 10^{-27} e \cdot cm$ $\varphi \approx \alpha/\pi \Rightarrow d = 10^{-26} - 10^{-30} e \cdot cm$

neutron: MSSM: $d = 10^{-24} e \cdot \text{cm} \cdot \sin \phi_{CP} \frac{200 \text{GeV}}{M_{SUSY}}$

SM EDM values

$$\mu_n = \frac{e}{2m_p} \approx 10^{-14} e \text{cm} \text{ (CP \& P conserving)}$$

$$d_n = 10^{-14} \times \underbrace{10^{-7}}_{P-\text{violation}} \times \underbrace{10^{-3}}_{CP-\text{violation}} \times \underbrace{G_F F_\pi}_{\text{no flavor change}} = 10^{-31} e \text{cm}$$

$$d_n = \mathcal{O}(g_w^4 g_s^2) = \mathcal{O}(G_F^2 g_s^2) \quad (3loop)$$

$$d_e = \mathcal{O}(g_w^6 g_s^2) = \mathcal{O}(G_F^2 g_s^2) \quad (4loop)$$

Electrostatic Deflectors

- Electrostatic deflectors from Fermilab (\pm 125kV at 5 cm $\hat{=}$ 5MV/m)
- large-grain Nb at plate separation of a few cm yields \approx 20MV/m

Wien Filter

Conventional design R. Gebel, S. Mey (FZ Jülich)

stripline design D. Hölscher, J. Slim (IHF RWTH Aachen)

Wien filter

- field: 2.7 · 10⁻²Tmm for 1kW input power
- frequency range: 100 kHz-2MHz

EDM Activities Around the World

K. Kirch

Systematics

• Splitting of beams:
$$\delta y = \pm \frac{\beta c R_0 B_r}{E_r Q_y^2} = \pm 1 \cdot 10^{-12} \text{ m}$$

- $Q_y \approx 0.1$: vertical tune
- Modulate $Q_y = Q_y^0 (1 m\cos(\omega_m t)), \ m \approx 0.1$
- Splitting causes *B* field of $\approx 0.4 \cdot 10^{-3}$ fT
- in one year: 10⁴ fills of 1000 s ⇒ σ_B = 0.4 · 10⁻¹ fT per fill needed
- Need sensitivity $1.25 \, \text{fT} / \sqrt{\text{Hz}}$

Phase WF - Polarisation

Systematics

Asymmetry in 1st period

Phase Measurements

1st derivative gives deviation from assumed spin tune

Phase Measurements

1st derivative gives deviation from assumed spin tune

$$\nu_{s}(n) = \nu_{s}^{0} + \frac{1}{2\pi} \frac{\mathrm{d}\tilde{\varphi}}{\mathrm{d}n}$$

Results: Spin Tune ν_s

Results: Spin Tune ν_s

Results: Spin Tune ν_s

Spin Tune for different cycles

Spin Feed back system

