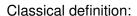
Charged Particle Electric Dipole Moment Searches in Storage Rings

J. PretzRWTH Aachen & FZ Jülich for the JEDI collaboration

PSTP Bochum, September 2015


Outline

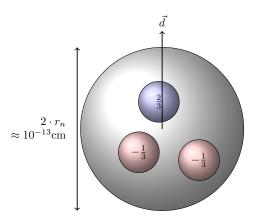
Introduction: Electric Dipole Moments (EDMs):
 What is it?
 Why is it interesting?
 What do we know about EDMs?

- Experimental Method: How to measure charged particle EDMs?
- Results of first test measurements:
 Spin Coherence time and Spin tune

What is it?

Electric Dipoles

$$\vec{d} = \sum_i q_i \vec{r}_i$$


Order of magnitude

	atomic physics	hadron physics
charges	е	
$ \vec{r}_1 - \vec{r}_2 $	1 Å= 10 ⁻⁸ cm	
EDM		
naive expectation	10 ^{−8} <i>e</i> · cm	
observed	water molecule	
	$2 \cdot 10^{-8} e \cdot \text{cm}$	

Order of magnitude

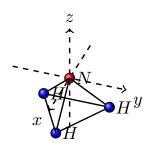
	atomic physics	hadron physics
charges	е	е
$ \vec{r}_1 - \vec{r}_2 $	1 Å= 10 ⁻⁸ cm	$1 \text{fm} = 10^{-13} \text{cm}$
EDM		
naive expectation	10 ⁻⁸ <i>e</i> ⋅ cm	10 ⁻¹³ <i>e</i> ⋅ cm
observed	water molecule	neutron
	$2 \cdot 10^{-8} e \cdot \text{cm}$	$< 3 \cdot 10^{-26} \ensuremath{e} \cdot \ensuremath{cm}$

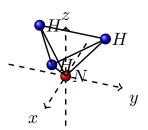
Neutron EDM

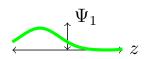
neutron EDM of $d_n = 3 \cdot 10^{-26} e \cdot \text{cm}$ corresponds to separation of u- from d-quarks of $\approx 5 \cdot 10^{-26} \text{cm}$

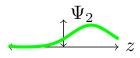
Operator $\vec{d} = q\vec{r}$

is odd under parity transformation ($\vec{r} \rightarrow -\vec{r}$):


$$\mathcal{P}^{-1}\vec{d}\mathcal{P} = -\vec{d}$$


Consequences:


In a state $|a\rangle$ of given parity the expectation value is 0:


$$\begin{split} \left\langle a|\vec{d}|a\right\rangle &= -\left\langle a|\vec{d}|a\right\rangle \\ \text{but if } |a\rangle &= \alpha|P=+\rangle + \beta|P=-\rangle \\ \text{in general } \left\langle a|\vec{d}|a\right\rangle \neq 0 \Rightarrow \text{i.e. molecules} \end{split}$$

EDM of molecules

ground state: mixture of

$$egin{aligned} \Psi_s &= rac{1}{\sqrt{2}} \left(\Psi_1 + \Psi_2
ight), \quad P = + \ \Psi_a &= rac{1}{\sqrt{2}} \left(\Psi_1 - \Psi_2
ight), \quad P = - \end{aligned}$$

EDMs & symmetry breaking

Molecules can have large EDM because of degenerated ground states with different parity

EDMs & symmetry breaking

Molecules can have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite parity and cannot posses an EDM

 $P|\text{had}>=\pm 1|\text{had}>$

EDMs & symmetry breaking

Molecules can have large EDM because of degenerated ground states with different parity

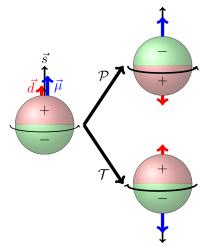
Elementary particles (including hadrons) have a definite parity and cannot posses an EDM

$$P|\text{had}>=\pm 1|\text{had}>$$

unless

 \mathcal{P} and time reversal \mathcal{T} invariance are violated!

\mathcal{T} and \mathcal{P} violation of EDM


 \vec{d} : EDM

 $\vec{\mu}$: magnetic moment both || to spin

$$H = -\mu \vec{\sigma} \cdot \vec{B} - d\vec{\sigma} \cdot \vec{E}$$

 $\mathcal{T}: \quad H = -\mu \vec{\sigma} \cdot \vec{\mathbf{B}} + d\vec{\sigma} \cdot \vec{\mathbf{E}}$

 $\mathcal{P}: H = -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{E}$

 \Rightarrow EDM measurement tests violation of fundamental symmetries \mathcal{P} and $\mathcal{T}(\stackrel{\mathcal{CPT}}{=}\mathcal{CP})$

Symmetry (Violations) in Standard Model

	electro-mag.	weak	strong
\mathcal{C}	✓	£	\checkmark
${\cal P}$	✓	£	(√)
$\mathcal{T} \stackrel{\mathit{CPT}}{\to} \mathcal{CP}$	✓	(£)	(√)

- C and P are maximally violated in weak interactions (Lee, Yang, Wu)
- CP violation discovered in kaon decays (Cronin,Fitch) described by CKM-matrix in Standard Model
- \mathcal{CP} violation allowed in strong interaction but corresponding parameter $\theta_{QCD} \lesssim 10^{-10}$ (strong \mathcal{CP} -problem)

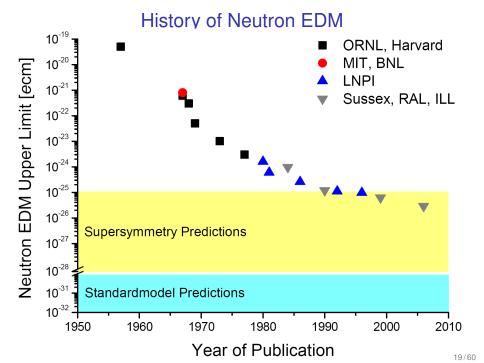
Sources of CP-Violation

Standard Model		
Weak interaction		
CKM matrix	ightarrow unobservably small EDMs	
Strong interaction		
θ_{QCD}	ightarrow best limit from neutron EDM	
beyond Standard Model		
e.g. SUSY	ightarrow accessible by EDM measurements	

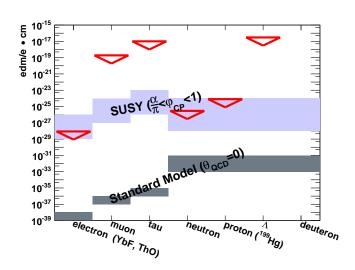
Why is it interesting?

Matter-Antimatter Asymmetry

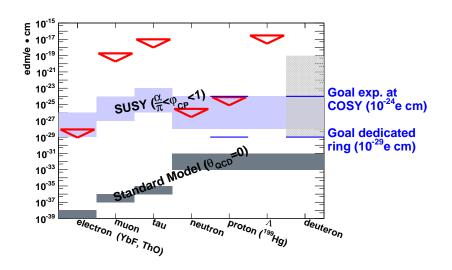
Excess of matter in the universe:


	observed	SM prediction
$\eta = rac{n_B - n_{ar{B}}}{n_{\gamma}}$	6×10^{-10}	10 ⁻¹⁸

Sakharov (1967): \mathcal{CP} violation needed for baryogenesis


 \Rightarrow New \mathcal{CP} violating sources beyond SM needed to explain this discrepancy

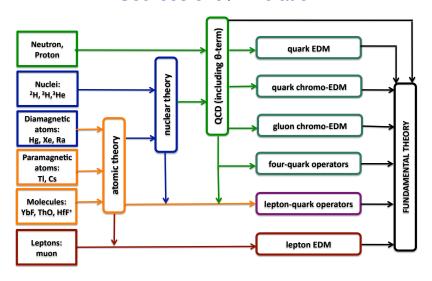
They could manifest in EDMs of elementary particles


What do we know about EDMs?

EDM: Current Upper Limits

EDM: Current Upper Limits

FZ Jülich: EDMs of **charged** hadrons: $p, d, {}^{3}$ He

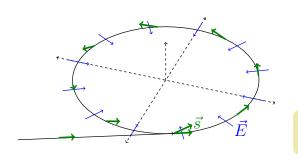

Why Charged Particle EDMs?

- no direct measurements for charged hadrons exist
- potentially higher sensitivity (compared to neutrons):
 - longer life time,
 - more stored protons/deuterons
- complementary to neutron EDM:

$$d_d \stackrel{?}{=} d_p + d_n \Rightarrow \text{access to } \theta_{QCD}$$

 EDM of one particle alone not sufficient to identify CP-violating source

Sources of CP Violation



J. de Vries

How to measure charged particle EDMs?

Experimental Method: Generic Idea

For **all** EDM experiments (neutron, proton, atoms, ...): Interaction of \vec{d} with electric field \vec{E} For charged particles: apply electric field in a storage ring:

$$rac{\mathrm{d}ec{s}}{\mathrm{d}t}\propto extbf{d}ec{E} imesec{s}$$

In general:

$$rac{\mathrm{d}ec{oldsymbol{s}}}{\mathrm{d}t}=ec{\Omega} imesec{oldsymbol{s}}$$

build-up of vertical polarization $s_{\perp} \propto |{\it d}|$

Experimental Requirements

- high precision storage ring
 (alignment, stability, field homogeneity)
- high intensity beams ($N = 4 \cdot 10^{10}$ per fill)
- polarized hadron beams (P = 0.8)
- large electric fields (E = 10 MV/m)
- long spin coherence time ($\tau = 1000 \, s$),
- polarimetry (analyzing power A = 0.6, acc. f = 0.005)

$$\sigma_{\text{stat}} \approx \frac{1}{\sqrt{Nf}\tau PAE} \quad \Rightarrow \sigma_{\text{stat}}(1\text{year}) = 10^{-29} \, e \cdot \text{cm}$$

challenge: get σ_{SVS} to the same level

Systematics

Major source:

Radial B field mimics an EDM effect:

- Difficulty: even small radial magnetic field, B_r can mimic EDM effect if : $\mu B_r \approx dE_r$
- Suppose $d = 10^{-29} e \cdot \text{cm}$ in a field of $E_r = 10 \text{MV/m}$
- This corresponds to a magnetic field:

$$B_r = \frac{dE_r}{\mu_N} = \frac{10^{-22} \text{eV}}{3.1 \cdot 10^{-8} \text{eV/T}} \approx 3 \cdot 10^{-17} \text{T}$$

Solution: Use two beams running clockwise and counter clockwise, separation of the two beams is sensitive to B_r

Systematics

Sensitivity needed: 1.25 fT/ $\sqrt{\rm Hz}$ for $d=10^{-29}\,e\,{\rm cm}$ (possible with SQUID technology)

$$\tfrac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \tfrac{e}{m} [G\vec{B} + \left(G - \tfrac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E} + \tfrac{m}{e\,s} \mathbf{d} (\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

Ω: angular precession frequency d: electric dipole moment

G: anomalous magnetic moment γ : Lorentz factor

BMT: Bargmann, Michel, Telegdi

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{\sqrt{s-1}}\right) \vec{v} \times \vec{E} + \frac{m}{es} \frac{d}{d} (\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

- Ω : angular precession frequency d: electric dipole moment
- G: anomalous magnetic moment γ : Lorentz factor

dedicated ring: pure electric field,

freeze horizontal spin motion
$$\left(G - \frac{1}{\gamma^2 - 1}\right) = 0$$

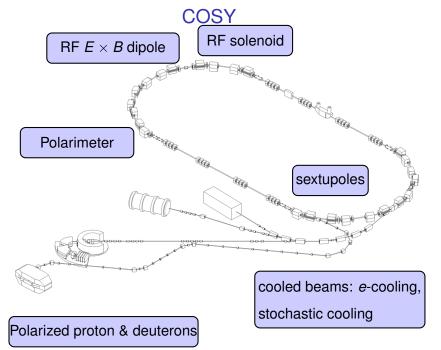
$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{r^2 - 1}\right) \vec{V} \times \vec{E} + \frac{m}{es} \vec{o} (\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

- Ω : angular precession frequency d: electric dipole moment
- G: anomalous magnetic moment γ : Lorentz factor
- **COSY:** pure magnetic ring access to EDM via motional electric field $\vec{v} \times \vec{B}$, requires additional radio-frequency E and B fields to suppress $G\vec{B}$ contribution

$$\tfrac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \tfrac{e}{m} [G\vec{B} + \left(G - \tfrac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E} + \tfrac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

- Ω : angular precession frequency d: electric dipole moment
- G: anomalous magnetic moment γ : Lorentz factor
- **COSY:** pure magnetic ring access to EDM via motional electric field $\vec{v} \times \vec{B}$, requires additional radio-frequency E and B fields to suppress $G\vec{B}$ contribution

spin tune:
$$\nu_{\mathcal{S}} pprox \frac{|\vec{\Omega}|}{|\omega_{\mathrm{cyc}}|} = \gamma G, \qquad (\vec{\omega}_{\mathrm{cyc}} = \frac{e}{\gamma m} \, \vec{B})$$


Results of first test measurements

Cooler Synchrotron COSY

COSY provides (polarized) protons and deuterons with $p=0.3-3.7 \mbox{GeV}/c$

⇒ Ideal starting point for charged particle EDM searches

R & D at COSY

- maximize spin coherence time (SCT)
- precise measurement of spin precession (spin tune)
- rf- Wien filter design and construction
- tests of electro static deflectors (goal: field strength > 10 MV/m)
- development of high precision beam position monitors
- polarimeter development
- spin tracking simulation tools

R & D at COSY

- maximize spin coherence time (SCT)
- precise measurement of spin precession (spin tune)
- rf- Wien filter design and construction
- tests of electro static deflectors (goal: field strength > 10 MV/m)
- development of high precision beam position monitors
- polarimeter development
- spin tracking simulation tools

E. Stephenson: Deuteron polarimeter developments

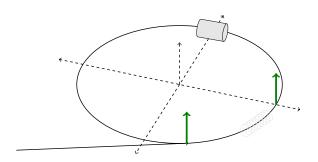
for a storage ring EDM search

I. Keshelashvili: Towards EDM Polarimetry

N. Hempelman: FPGA-Based Upgrade of the Read-Out

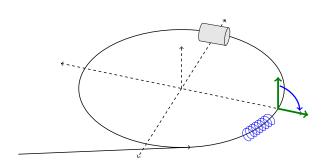
Electronics for the Low Energy Polarimeter at COSY/Jülich

R & D at COSY

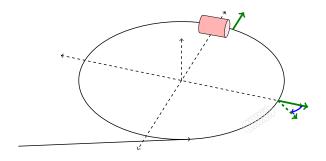

- maximize spin coherence time (SCT)
- precise measurement of spin precession (spin tune)
- rf- Wien filter design and construction
- tests of electro static deflectors (goal: field strength > 10 MV/m)
- development of high precision beam position monitors
- polarimeter development
- spin tracking simulation tools

S. Mey: Spin Manipulation with an RF Wien-Filter at COSY J. Slim: Towards a High-Accuracy RF Wien Filter

for Spin Manipulation at COSY Jülich


Experimental Setup

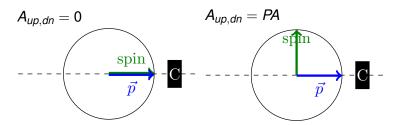
• Inject and accelerate vertically polarized deuterons to $p \approx 1~{\rm GeV}/c$


Experimental Setup

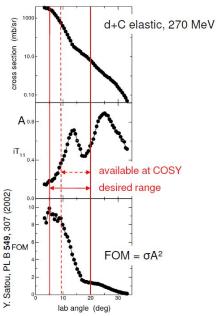
- Inject and accelerate vertically polarized deuterons to $p \approx 1 \; \text{GeV/}c$
- flip spin with help of solenoid into horizontal plane

Experimental Setup

- Inject and accelerate vertically polarized deuterons to $p \approx 1 \text{ GeV/}c$
- flip spin with help of solenoid into horizontal plane
- Extract beam slowly (in 100 s) on target
- Measure asymmetry and determine spin precession



Asymmetry Measurements

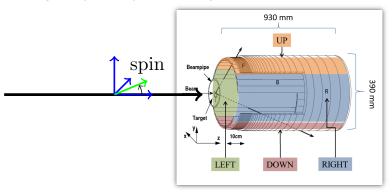

• Detector signal $N^{up,dn} \propto (1 \pm PA \sin(\gamma G\omega_{rev} t))$

$$A_{up,dn} = \frac{N^{up} - N^{dn}}{N^{up} + N^{dn}} = P A \sin(\gamma G \omega_{rev} t)$$

A: analyzing power, P: polarization

Polarimetry

Cross Section & Analyzing Power for deuterons


$$N_{up,dn} \propto (1 \pm P A \sin(\nu_s \omega_{rev} t))$$

$$egin{aligned} A_{up,dn} &= rac{N^{up} - N^{dn}}{N^{up} + N^{dn}} \ &= P \, A \, \sin(
u_s \omega_{rev} t) \end{aligned}$$

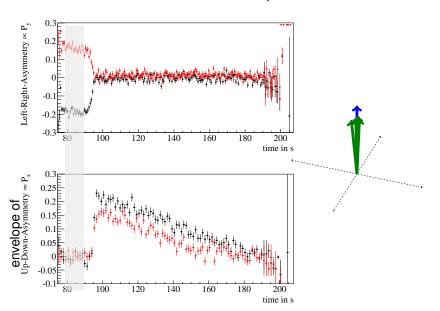
A: analyzing powerP: beam polarization

Polarimeter

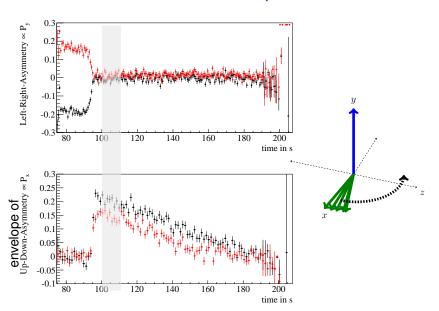
elastic deuteron-carbon scattering Up/Down asymmetry \propto horizontal polarization $\rightarrow \nu_s = \gamma G$ Left/Right asymmetry \propto vertical polarization \rightarrow σ

$$N_{up,dn} \propto 1 \pm PA \sin(\nu_s \omega_{rev} t), \quad f_{rev} \approx 750 \, \mathrm{kHz}$$

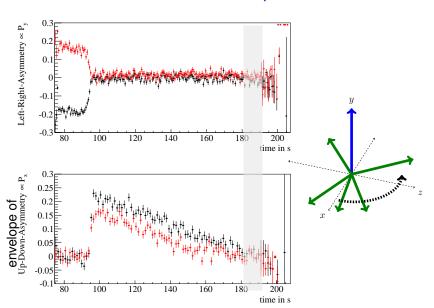
Up - dn asymmetry $A_{up,dn}$


$$A_{up,dn}(t) = AP_0e^{-t/\tau}\sin(\nu_s\omega_{rev}t + \varphi)$$

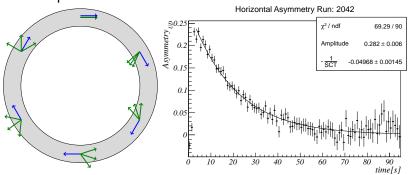
- ullet au au spin decoherence
- $\nu_s \rightarrow \text{spin tune}$


time scales: $\nu_s f_{rev} \approx$ 120 kHz

 τ in the range 1-1000 s


Polarization Flip

Polarization Flip

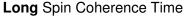


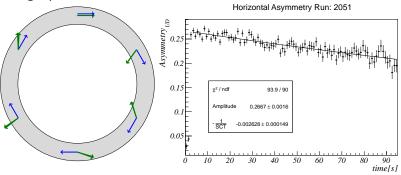
Polarization Flip

Results: Spin Coherence Time (SCT)

Short Spin Coherence Time

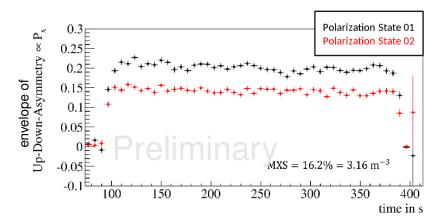
unbunched beam


$$\Delta p/p = 10^{-5} \Rightarrow \Delta \gamma/\gamma = 2 \cdot 10^{-6}, T_{rev} \approx 10^{-6} \, \mathrm{s}$$

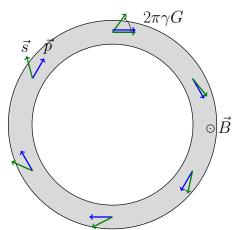

 \Rightarrow decoherence after < 1 s

bunched beam eliminates 1st order effects in $\Delta p/p$

$$\Rightarrow$$
 SCT τ = 20 s


Results: Spin Coherence Time (SCT)

SCT of τ =400 s, after correction with sextupoles (chromaticities $\xi \approx 0$)

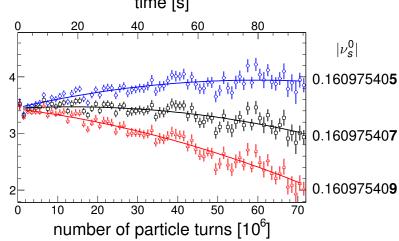

Longer cycle

(data taken a few weeks ago)

Spin Tune ν_s

Spin tune: $\nu_s = \gamma G = \frac{\text{nb. of spin rotations}}{\text{nb. of particle revolutions}}$

deuterons: $p_d = 1 \text{ GeV/}c$ ($\gamma = 1.13$), G = -0.14256177(72)


$$\Rightarrow \nu_{s} = \gamma G \approx -0.161$$

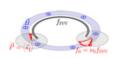
Up - dn asymmetry $A_{up,dn}$

Long SCT τ allows now to observe $\nu_s(t) \approx \gamma G$, respectively $\varphi(t)$

$$\begin{array}{lcl} \textit{A}_{\textit{up},\textit{dn}}(t) & = & \textit{AP}_0 \mathrm{e}^{-t/\tau} \sin(\nu_{\textit{s}}(t)\omega_{\textit{rev}}t + \varphi) \\ & = & \textit{AP}_0 \mathrm{e}^{-t/\tau} \sin(\nu_{\textit{s}}^0\omega_{\textit{rev}}t + \varphi(t)) \end{array}$$

Phase vs. turn number time [s]

ῷ [rad]


$$|\nu_s(t)| = |\nu_s^0| + \frac{1}{\omega_{rev}} \frac{\mathrm{d}\tilde{\varphi}}{\mathrm{d}t}$$

 $\Rightarrow |\nu_s(38\,\mathrm{s})| = (16\,097\,540\,628.3 \pm 9.7) \times 10^{-11}$

Editors' Suggestion

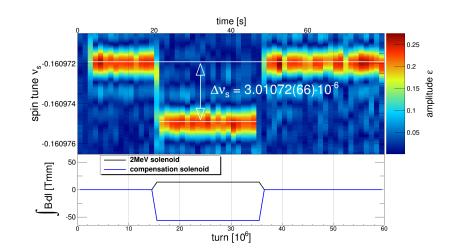
New Method for a Continuous Determination of the Spin Tune in Storage Rings and Implications for Precision Experiments

D. Eversmann et al. (JEDI collaboration)

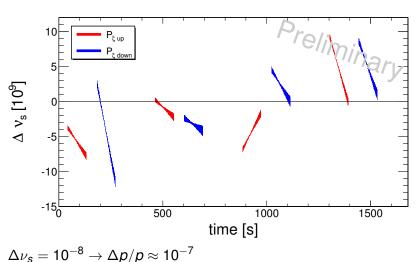
Phys. Rev. Lett. 115, 094801 (2015) - Published 26 August 2015

The spin precession frequency of a charged particle in a storaring is determined with substantially increased precision. This allows for improved measurements of the electric dipole moments of charged particles.

Show Abstract +


Spin Tune Measurement

- precision of spin tune measurement 10⁻¹⁰ in one cycle (most precise spin tune measurement)
- Compare to muon g-2: $\sigma_{\nu_s}\approx 3\cdot 10^{-8}$ per year main difference: measurement duration $600\mu s$ compared to $100\,s$
- spin rotation due to electric dipole moment:


$$v_s = \frac{vm\gamma d}{es} = 5 \cdot 10^{-11}$$
 for $d = 10^{-24}e$ cm (in addition rotations due to G and imperfections)

 spin tune measurement can now be used as tool to investigate systematic errors

Spin Tune jumps

Spin Tune for different cycles

 $\Delta \nu_{\rm s} \equiv 10 \quad \rightarrow \Delta p/p \approx 10$

JEDI Collaboration

- JEDI = Jülich Electric Dipole Moment Investigations
- ≈ 100 members
 (Aachen, Bonn, Daejeon, Dubna, Ferrara, Grenoble, Indiana, Ithaca, Jülich, Krakow, Michigan, Minsk, Novosibirsk, St. Petersburg, Stockholm, Tbilisi, . . .)
- ≈ 10 PhD students
- close collaboration with srEDM collaboration in US/Korea

http://collaborations.fz-juelich.de/ikp/jedi/index.shtml

Summary & Outlook

- EDMs of elementary particles are of high interest to disentangle various sources of CP violation searched for to explain matter - antimatter asymmetry in the Universe
- EDM of charged particles can be measured in storage rings
- Experimentally very challenging because effect is tiny
- First promising results from test measurements at COSY:

spin coherence time: few hundred seconds

spin tune: 10^{-10} in 100 s