Electric Dipole Moment Measurements at Storage Rings

J. Pretz
RWTH Aachen & FZ Jülich

PSI, March 2015
Introduction: Electric Dipole Moments (EDMs):
What is it?
Why is it interesting?
What do we know about EDMs?

Experimental Method:
How to measure charged particle EDMs?

Results of first test measurements:
Spin Coherence time and Spin tune
What is it?
Electric Dipoles

Classical definition:

\[\vec{d} = \sum_{i} q_i \vec{r}_i \]
Order of magnitude

<table>
<thead>
<tr>
<th></th>
<th>atomic physics</th>
<th>hadron physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>charges</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\vec{r}_1 - \vec{r}_2</td>
<td>$</td>
</tr>
<tr>
<td>EDM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>naive expectation</td>
<td>$10^{-8} e \cdot \text{cm}$</td>
<td></td>
</tr>
<tr>
<td>observed</td>
<td>water molecule</td>
<td>$2 \cdot 10^{-8} e \cdot \text{cm}$</td>
</tr>
</tbody>
</table>
Order of magnitude

<table>
<thead>
<tr>
<th></th>
<th>atomic physics</th>
<th>hadron physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>charges</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>$</td>
<td>\vec{r}_1 - \vec{r}_2</td>
<td>$</td>
</tr>
<tr>
<td>EDM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>naive expectation</td>
<td>$10^{-8} e \cdot \text{ cm}$</td>
<td>$10^{-13} e \cdot \text{ cm}$</td>
</tr>
<tr>
<td>observed</td>
<td>water molecule</td>
<td>neutron</td>
</tr>
<tr>
<td></td>
<td>$2 \cdot 10^{-8} e \cdot \text{ cm}$</td>
<td>$< 3 \cdot 10^{-26} e \cdot \text{ cm}$</td>
</tr>
</tbody>
</table>
neutron EDM of $d_n = 3 \cdot 10^{-26}$ e·cm corresponds to separation of u– from d–quarks of $\approx 5 \cdot 10^{-26}$ cm
Operator $\vec{d} = q\vec{r}$

is odd under parity transformation ($\vec{r} \rightarrow -\vec{r}$):

$$\mathcal{P}^{-1}\vec{d}\mathcal{P} = -\vec{d}$$

Consequences:
In a state $|a\rangle$ of given parity the expectation value is 0:

$$\langle a|\vec{d}|a\rangle = -\langle a|\vec{d}|a\rangle$$

but if $|a\rangle = \alpha|P = +\rangle + \beta|P = -\rangle$

in general $\langle a|\vec{d}|a\rangle \neq 0 \Rightarrow$ i.e. molecules
EDM of molecules

ground state: mixture of

\[\psi_s = \frac{1}{\sqrt{2}} (\psi_1 + \psi_2), \quad P = + \]
\[\psi_a = \frac{1}{\sqrt{2}} (\psi_1 - \psi_2), \quad P = - \]
Order of magnitude

Molecules can have large EDM because of degenerated ground states with different parity.
Molecules can have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite parity and cannot posses an EDM
\[P|\text{had} \> = \pm 1|\text{had} \> \]
Molecules can have large EDM because of degenerated ground states with different parity.

Elementary particles (including hadrons) have a definite parity and cannot possess an EDM

\[P|\text{had} > = \pm 1|\text{had} > \]

unless

\[\mathcal{P} \text{ and time reversal } T \text{ invariance are violated!} \]
\vec{d}: EDM
$\vec{\mu}$: magnetic moment
both \parallel to spin

$$H = -\mu \vec{\sigma} \cdot \vec{B} - d \vec{\sigma} \cdot \vec{E}$$

\mathcal{T}: $H = -\mu \vec{\sigma} \cdot \vec{B} + d \vec{\sigma} \cdot \vec{E}$

\mathcal{P}: $H = -\mu \vec{\sigma} \cdot \vec{B} + d \vec{\sigma} \cdot \vec{E}$

\Rightarrow EDM measurement tests violation of fundamental symmetries \mathcal{P} and $\mathcal{T}(\Leftrightarrow \mathcal{CP})$
Symmetries in Standard Model

<table>
<thead>
<tr>
<th></th>
<th>electro-mag.</th>
<th>weak</th>
<th>strong</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>✓</td>
<td>⌚</td>
<td>✓</td>
</tr>
<tr>
<td>\mathcal{P}</td>
<td>✓</td>
<td>⌚</td>
<td>(✓)</td>
</tr>
<tr>
<td>$\mathcal{CPT} \rightarrow \mathcal{CP}$</td>
<td>✓</td>
<td>(✓)</td>
<td>(✓)</td>
</tr>
</tbody>
</table>

- C and \mathcal{P} are maximally violated in weak interactions (Lee, Yang, Wu)
- \mathcal{CP} violation discovered in kaon decays (Cronin,Fitch) described by CKM-matrix in Standard Model
- \mathcal{CP} violation allowed in strong interaction but corresponding parameter $\theta_{QCD} \lesssim 10^{-10}$ (strong \mathcal{CP}-problem)
Sources of \mathcal{CP}–Violation

<table>
<thead>
<tr>
<th>Standard Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak interaction</td>
</tr>
<tr>
<td>CKM matrix</td>
</tr>
<tr>
<td>Strong interaction</td>
</tr>
<tr>
<td>θ_{QCD}</td>
</tr>
<tr>
<td>beyond Standard Model</td>
</tr>
<tr>
<td>e.g. SUSY</td>
</tr>
</tbody>
</table>
Why is it interesting?
Matter-Antimatter Asymmetry

Excess of matter in the universe:

\[\eta = \frac{n_B - n_{\bar{B}}}{n_\gamma} \]

<table>
<thead>
<tr>
<th></th>
<th>observed</th>
<th>SM prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta)</td>
<td>(6 \times 10^{-10})</td>
<td>(10^{-18})</td>
</tr>
</tbody>
</table>

Sakharov (1967): \(CP \) violation needed for baryogenesis

⇒ New \(CP \) violating sources beyond SM needed to explain this discrepancy

They could manifest in EDMs of elementary particles
What do we know about EDMs?
EDM: Current Upper Limits

- Electron (YbF, ThO)
- Muon
- Tau
- Neutron (Hg)
- Proton (Λ)
- Deuteron

$\text{edm/e cm} \times 10^n$

- 10^{-39}
- 10^{-37}
- 10^{-35}
- 10^{-33}
- 10^{-31}
- 10^{-29}
- 10^{-27}
- 10^{-25}
- 10^{-23}
- 10^{-21}
- 10^{-19}
- 10^{-17}
- 10^{-15}

- Standard Model ($\theta_{QCD}=0$)
- SUSY ($\frac{\alpha}{\pi} < \varphi_{CP} < 1$)

- FZ Jülich: EDMs of charged hadrons: $p, d, \Lambda, \text{He}_3$
EDM: Current Upper Limits

FZ Jülich: EDMs of charged hadrons: $p, d, ^3\text{He}$
Why Charged Particle EDMs?

- no direct measurements for charged hadrons exist
- potentially higher sensitivity (compared to neutrons):
 - longer life time,
 - more stored protons/deuterons
- complementary to neutron EDM:
 \[d_d = d_p + d_n \Rightarrow \text{access to } \theta_{QCD} \]
- EDM of one particle alone not sufficient to identify \(CP \)-violating source
Sources of \(CP \) Violation

- Neutron, Proton
- Nuclei: \(^2\text{H}, ^3\text{H}, ^3\text{He}\)
- Diamagnetic atoms: Hg, Xe, Ra
- Paramagnetic atoms: Tl, Cs
- Molecules: YbF, ThO, HfF\(^+\)
- Leptons: muon
- Quark EDM
- Quark chromo-EDM
- Gluon chromo-EDM
- Four-quark operators
- Lepton-quark operators
- Lepton EDM

J. de Vries
How to measure charged particle EDMs?
Experimental Method: Generic Idea

For all EDM experiments (neutron, proton, atoms, ...):

Interaction of \vec{d} with electric field \vec{E}

For charged particles: apply electric field in a storage ring:

\[
\frac{d\vec{s}}{dt} \propto d\vec{E} \times \vec{s}
\]

In general:

\[
\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s}
\]

build-up of vertical polarization $s_\perp \propto |d|$
Experimental Requirements

- high precision storage ring (alignment, stability, field homogeneity)
- high intensity beams ($N = 4 \cdot 10^{10}$ per fill)
- polarized hadron beams ($P = 0.8$)
- large electric fields ($E = 10$ MV/m)
- long spin coherence time ($\tau = 1000$ s),
- polarimetry (analyzing power $A = 0.6$, acc. $f = 0.005$)

\[
\sigma_{\text{stat}} \approx \frac{1}{\sqrt{Nf\tau PAE}} \Rightarrow \sigma_{\text{stat}}(1\text{year}) = 10^{-29} \text{e} \cdot \text{cm}
\]

challenge: get σ_{sys} to the same level
Systematics

Major source:
Radial B field mimics an EDM effect:

- Difficulty: even small radial magnetic field, B_r can mimic EDM effect if $\mu B_r \approx dE_r$
- Suppose $d = 10^{-29} \text{e} \cdot \text{cm}$ in a field of $E_r = 10\text{MV/m}$
- This corresponds to a magnetic field:
 $$B_r = \frac{dE_r}{\mu_N} = \frac{10^{-22} \text{eV}}{3.1 \cdot 10^{-8} \text{eV/T}} \approx 3 \cdot 10^{-17} \text{T}$$

Solution: Use two beams running clockwise and counter clockwise, separation of the two beams is sensitive to B_r
Sensitivity needed: $1.25 \text{ fT}/\sqrt{\text{Hz}}$ for $d = 10^{-29} \text{ e cm}$ (possible with SQUID technology)
Spin Precession: Thomas-BMT Equation

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{e}{m}[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E} + \frac{m}{e\gamma}d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

Ω: angular precession frequency
d: electric dipole moment
G: anomalous magnetic moment
γ: Lorentz factor
Spin Precession: Thomas-BMT Equation

\[\frac{\mathbf{d}s}{\mathbf{d}t} = \bar{\Omega} \times \mathbf{s} = \frac{e}{m}[G\mathbf{B} + \left(G - \frac{1}{\gamma^2 - 1}\right) \mathbf{v} \times \mathbf{E} + \frac{m}{e} d (\mathbf{E} + \mathbf{v} \times \mathbf{B})] \times \mathbf{s} \]

\(\bar{\Omega} \): angular precession frequency
\(d \): electric dipole moment
\(G \): anomalous magnetic moment
\(\gamma \): Lorentz factor

dedicated ring: pure electric field,
freeze horizontal spin motion \(\left(G - \frac{1}{\gamma^2 - 1}\right) = 0 \)
Spin Precession: Thomas-BMT Equation

\[
\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{e}{m}[G\vec{B} + \left(G - \frac{1}{\gamma^2-1}\right)\vec{v} \times \vec{E} + \frac{m}{e\gamma}d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}
\]

Ω: angular precession frequency
d: electric dipole moment
G: anomalous magnetic moment
γ: Lorentz factor

COSY: pure magnetic ring
access to EDM via motional electric field \(\vec{v} \times \vec{B}\),
requires additional radio-frequency \(E\) and \(B\) fields
to suppress \(G\vec{B}\) contribution
\[\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{e}{m} \left(G\vec{B} + \frac{m}{es} d\vec{v} \times \vec{B} \right) \times \vec{s} \]

Problem:
Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is \(\parallel \) to momentum, 50% of the time it is anti-\(\parallel \).

\[\vec{E}^* = \vec{v} \times \vec{B} \]

\[\vec{s} \]
\[\vec{p} \]

E* field in the particle rest frame tilts spin due to EDM up and down \(\Rightarrow \) no net EDM effect.
\[\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{e}{m} \left(G\vec{B} + \frac{m}{es} d\vec{v} \times \vec{B} \right) \times \vec{s} \]

Problem:
Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is \(\parallel \) to momentum, 50% of the time it is anti-\(\parallel \).

\[
\vec{E}^* = \vec{v} \times \vec{B}
\]

\(\vec{s} \rightarrow \vec{p} \)

> 50% \(\dot{s}_d = \otimes

< 50% \(\dot{s}_d = \odot

\(E^* \) field in the particle rest frame tilts spin due to EDM up and down \(\Rightarrow \) no net EDM effect

Use resonant “magic Wien-Filter” in ring \((\vec{E}_W + \vec{v} \times \vec{B}_W = 0) \):

\(E^*_W = 0 \rightarrow \) part. trajectory is not affected but

\(B^*_W \neq 0 \rightarrow \) mag. mom. is influenced

\(\Rightarrow \) net EDM effect can be observed!
Spin Precession: Thomas-BMT Equation

\[
\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{e}{m}[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} + \frac{m}{es}d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}
\]

\(\vec{\Omega}\): angular precession frequency
\(d\): electric dipole moment
\(G\): anomalous magnetic moment
\(\gamma\): Lorentz factor

COSY:

- pure magnetic ring
- access to EDM via motional electric field \(\vec{v} \times \vec{B}\)
- requires additional radio-frequency \(E\) and \(B\) fields to suppress \(G\vec{B}\) contribution

neglecting EDM term

spin tune: \(\nu_s \approx \left|\frac{\vec{\Omega}}{\omega_{cyc}}\right| = \gamma G\), \(\left(\vec{\omega}_{cyc} = \frac{e}{\gamma m} \vec{B}\right)\)
Results of first test measurements
COSY provides (polarized) protons and deuterons with $p = 0.3 - 3.7\text{GeV/c}$

⇒ Ideal starting point for charged particle EDM searches
R & D at COSY

- maximize spin coherence time (SCT)
- precise measurement of spin precession (spin tune)
- rf- Wien filter design and construction
- tests of electro static deflectors (goal: field strength > 10 MV/m)
- development of high precision beam position monitors
- polarimeter development
- spin tracking simulation tools
Experimental Setup

- Inject and accelerate vertically polarized deuterons to $p \approx 1 \text{ GeV/c}$
Experimental Setup

- Inject and accelerate vertically polarized deuterons to $p \approx 1 \text{ GeV/c}$
- flip spin with help of solenoid into horizontal plane
Experimental Setup

- Inject and accelerate vertically polarized deuterons to $p \approx 1 \text{ GeV/c}$
- Flip spin with help of solenoid into horizontal plane
- Extract beam slowly (in 100 s) on target
- Measure asymmetry and determine spin precession
Asymmetry Measurements

Detector signal \(N_{up,dn} \propto (1 \pm P A \sin(\gamma G_{rev} t)) \)

\[A_{up, dn} = \frac{N_{up} - N_{dn}}{N_{up} + N_{dn}} = P A \sin(\gamma G_{rev} t) = P A \sin(\nu s n_{\text{turn}}) \]

\(A \): analyzing power, \(P \): polarization

\[A_{up, dn} = 0 \]

\[A_{up, dn} = PA \]
Polarimetry

Cross Section & Analyzing Power for deuterons

\[N_{up, dn} \propto (1 \pm PA \sin(\nu_s f_{rev} t)) \]

\[A_{up, dn} = \frac{N^{up} - N^{dn}}{N^{up} + N^{dn}} \]
\[= PA \sin(\nu_s f_{rev} t) \]
\[= PA \sin(\nu_s n_{turn}) \]

\(A \): analyzing power
\(P \): beam polarization
Polarimeter

elastic deuteron-carbon scattering

Up/Down asymmetry \propto horizontal polarization $\rightarrow \nu_s = \gamma G$

Left/Right asymmetry \propto vertical polarization $\rightarrow d$

$$N_{up, dn} \propto 1 \pm PA \sin(\nu_s n_{turn}), \quad f_{rev} \approx 750 \text{ kHz}$$
Results: Spin Coherence Time (SCT)

Short Spin Coherence Time

unbunched beam

$\Delta p/p = 10^{-5} \Rightarrow \Delta \gamma/\gamma = 2 \cdot 10^{-6}$, $T_{rev} \approx 10^{-6}$ s

\Rightarrow decoherence after < 1 s

cooled bunched beam eliminates 1st order effects in $\Delta p/p$

\Rightarrow SCT $\tau = 20$ s
Results: Spin Coherence Time (SCT)

Long Spin Coherence Time

![Graph showing horizontal asymmetry run 2051 with values for \(\chi^2 \), amplitude, and SCT.]

Using correction sextupole to correct for higher order effects leads to SCT of \(\tau = 400 \text{ s} \).
Spin Tune ν_s

Spin tune: $\nu_s = \gamma G = \frac{\text{nb. of spin rotations}}{\text{nb. of particle revolutions}}$

deuterons: $p_d = 1 \text{ GeV/c} \ (\gamma = 1.13), \ G = -0.14256177(72)$

$\Rightarrow \nu_s = \gamma G \approx -0.161$
Spin Tune ν_s measurement

- Problem: detector rate ≈ 5 kHz, $f_{rev} = 750$kHz
 - \Rightarrow only 1 hit every 25th period
- Not possible to use usual χ^2-fit
- Use unbinned Maximum Likelihood (under investigation)

![Graph showing the distribution of events over turn numbers](image)
Spin Tune ν_s measurement

- map all events into first period ($T = 1/(\nu_s f_{rev}) \approx 8\mu s$) and perform χ^2-fit (requires knowledge of $\nu_s f_{rev}$)
- Analysis is done in macroscopic time bins of 10^6 turns (≈ 1.3 s)
Asymmetry in 1st period

Preliminary only works if $T_s = \frac{1}{\nu_s f_{rev}}$ is correct.
allows for $\sigma_{\nu_s} \approx 10^{-6}$

now fix ν_s at maximum and look at phase vs. turn number
phase is determined for turn intervals of 10^6 turns
Phase Measurements

10^6 turns

1st derivative gives deviation from assumed spin tune
Phase Measurements

10^6 turns

1st derivative gives deviation from assumed spin tune

phase

turn nb., time

1st derivative gives deviation from assumed spin tune
\[\nu_s(n) = \nu_s^0 + \frac{1}{2\pi} \frac{d\phi}{dn} \]
Results: Spin Tune ν_s

![Graph showing the relationship between time [s] and number of particle turns [10^6], with angular displacement ϕ on the y-axis and time on the x-axis. The data points are marked with small + symbols.](image-url)
Results: Spin Tune ν_S

\[\hat{\phi} [\text{rad}] \]
\begin{align*}
\phi &\sim 2.5 \\
3 &\sim 3.5
\end{align*}

\[\Delta \nu_s [10^{-9}] \]
\begin{align*}
0 &\sim 50 \\
-50 &\sim 0
\end{align*}
Results: Spin Tune ν_s

time [s]

$\bar{\phi}$ [rad]

$\Delta \nu_s [10^{-9}]$

$\Delta \nu_s [10^{-9}]$

number of particle turns $[10^6]$
Spin Tune Measurement

- precision of spin tune measurement 10^{-10} in one cycle
- spin rotation due to electric dipole moment:
 \[\nu_s = \frac{vm\gamma d}{es} = 5 \cdot 10^{-11} \text{ for } d = 10^{-24} \text{ e cm} \]
 (in addition rotations due to G and imperfections)
- Compare to muon $g - 2$: $\sigma_{\nu_s} \approx 3 \cdot 10^{-8}$ per year
- main difference: measurement duration $600\mu s$ compared to $100 s$
- spin tune measurement can now be used as tool to investigate systematic errors
Spin Tune as tool to investigate systematics

$$\nu_s = \gamma G + \text{imperfections kicks}$$

- Create artificial imperfections with solenoids/steerers
- measure spin tune change $\Delta \nu_s$
- expectation
 $$\Delta \nu_s \propto (y_\pm - a_\pm)^2$$
 a_\pm: kicks due to imperfections,
 y_\pm: kicks due to solenoids
Spin Tune jumps

\[\Delta v_s = 3.01072(66) \times 10^{-6} \]
parabolic behavior expected from simulations

\[\beta = \frac{\chi_1 \pm \chi_2}{2}, \chi_{1,2}: \text{solenoid strength} \]

for perfect machine, minimum should be at \(y^+ = 0 \)
parabolic behavior expected from simulations

\[y_\pm = \chi_1 \pm \chi_2 \]

\[\Delta \nu_s (y_- = \text{const}) \]

\[y_- = 9.25 \text{ mrad} \]

\[y_- = 3.7 \text{ mrad} \]

parabolic behavior expected from simulations

\[y_\pm = \frac{\chi_1 \pm \chi_2}{2} \]

\(\chi_{1,2} \): solenoid strength

for perfect machine, minimum should be at \(y^+ = 0 \)
JEDI Collaboration

- **JEDI** = Jülich Electric Dipole Moment Investigations
- ≈ 100 members
 (Aachen, Daejeon, Dubna, Ferrara, Grenoble, Indiana, Ithaca, Jülich, Krakow, Michigan, Minsk, Novosibirsk, St. Petersburg, Stockholm, Tbilisi, ...)
- ≈ 10 PhD students
Storage Ring EDM Efforts

Common R&D work
- Spin Coherence Time
- BPMs
- Spin Tracking
- Polarimetry
- electric fields
- ...

BNL
- all electric ring (p)

Jülich
- first direct measurement with upgraded COSY
- dedicated ring (p,d,³He)
EDMs of elementary particles are of high interest to disentangle various sources of \mathcal{CP} violation searched for to explain matter - antimatter asymmetry in the Universe.

EDM of charged particles can be measured in storage rings.

Experimentally very challenging because effect is tiny.

First promising results from test measurements at COSY:

- Spin coherence time: few hundred seconds
- Spin tune precision: 10^{-10} in one cycle
Spare
Electron and Neutron EDM

J. M. Pendlebury & E.A. Hinds,
NIMA 440(2000) 471
EDM: SUSY Limits

electron:
MSSM: \(\varphi \approx 1 \Rightarrow d = 10^{-24} - 10^{-27} \, \text{e}\cdot\text{cm} \)
\(\varphi \approx \alpha/\pi \Rightarrow d = 10^{-26} - 10^{-30} \, \text{e}\cdot\text{cm} \)

neutron:
MSSM: \(d = 10^{-24} \, \text{e}\cdot\text{cm} \cdot \sin \phi_{CP} \frac{200 \, \text{GeV}}{M_{SUSY}} \)
Electrostatic defectors from Fermilab (±125kV at 5 cm ≈ 5MV/m)

- large-grain Nb at plate separation of a few cm yields ≈ 20MV/m
Wien Filter

Conventional design
R. Gebel, S. Mey (FZ Jülich)

stripline design
D. Hölscher, J. Slim
(IHF RWTH Aachen)
2. Pure Electric Ring

Figure 3: An all-electric storage ring lattice for measuring the electric dipole moment of the proton. Except for having longer straight sections and separated beam channels, the all-in-one lattice of Fig. 1 is patterned after this lattice. Quadrupole and sextupole families, and tunes and lattice functions of the all-in-one lattice of Fig. 1 will be quite close to those given for this lattice in reference[3]. The match will be even closer with magnetic field set to zero for proton operation.

Brookhaven National Laboratory (BNL) Proposal
3. Combined \vec{E}/\vec{B} ring

Figure 1: “All-In-One” lattice for measuring EDM’s of protons, deuterons, and helions.

Under discussion at Forschungszentrum Jülich (design: R. Talman)
Summary of different options

<table>
<thead>
<tr>
<th></th>
<th>Session 1</th>
<th>Session 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>pure magnetic ring (Jülich)</td>
<td>existing (upgraded) COSY ring can be used, shorter time scale</td>
</tr>
<tr>
<td>2.</td>
<td>pure electric ring (BNL)</td>
<td>no \vec{B} field needed</td>
</tr>
<tr>
<td>3.</td>
<td>combined ring (Jülich)</td>
<td>works for $p, d, ^3\text{He}, \ldots$</td>
</tr>
</tbody>
</table>
EDM Activities Around the World

- Neutrons
 - ILL
 - ILL, @PNPI
 - PSI
 - FRM-2
 - RCNP, @TRIUMF
 - SNS
 - J-PARC

- Molecules
 - YbF@Imperial
 - PbO@Yale
 - ThO@Harvard
 - HfF+@JILA
 - W@UMich
 - PbF@Oklahoma

 Rough estimate of numbers of researchers, in total ~500 (with some overlap)

- Atoms
 - Hg@UWash
 - Xe@Princeton
 - Xe@TokyoTech
 - Xe@TUM
 - Xe@Mainz
 - Cs@Penn
 - Cs@Texas
 - Fr@RCNP/CYRIC
 - Rn@TRIUMF
 - Ra@ANL
 - Ra@KVI
 - Yb@Kyoto

- Ions-Muons
 - BNL
 - FZJ
 - FNAL
 - JPARC

 ~200

- Solids
 - GGG@Indiana
 - ferroelectrics@Yale

 ~10

K. Kirch
Systematics

Splitting of beams: \(\delta y = \pm \frac{\beta c R_0 B_r}{E_r Q_y^2} = \pm 1 \cdot 10^{-12} \text{ m} \)

\(Q_y \approx 0.1 \): vertical tune

Modulate \(Q_y = Q_y^0 (1 - m \cos(\omega_m t)) \), \(m \approx 0.1 \)

Splitting causes \(B \) field of \(\approx 0.4 \cdot 10^{-3} \text{ fT} \)

in one year: \(10^4 \) fills of 1000 s \(\Rightarrow \sigma_B = 0.4 \cdot 10^{-1} \text{ fT per fill needed} \)

Need sensitivity \(1.25 \text{ fT}/\sqrt{\text{Hz}} \)

D. Kawall
Systematics