Electric Dipole Moment Measurements at Storage Rings

J. Pretz RWTH Aachen & FZ Jülich

PSI, March 2015

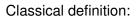
Outline

Introduction: Electric Dipole Moments (EDMs):
 What is it?
 Why is it interesting?
 What do we know about EDMs?

- Experimental Method: How to measure charged particle EDMs?
- Results of first test measurements:
 Spin Coherence time and Spin tune

What is it?

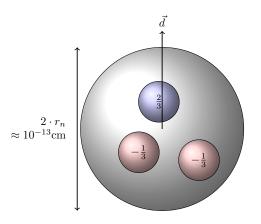
Electric Dipoles



$$\vec{d} = \sum_i q_i \vec{r}_i$$

	atomic physics	hadron physics
charges	е	
$ \vec{r}_1 - \vec{r}_2 $	1 Å= 10 ⁻⁸ cm	
EDM		
naive expectation	10 ⁻⁸ <i>e</i> ⋅ cm	
observed	water molecule	
	$2 \cdot 10^{-8} e \cdot \text{cm}$	

	atomic physics	hadron physics
charges	е	е
$ \vec{r}_1 - \vec{r}_2 $	1 Å= 10 ⁻⁸ cm	$1 \text{fm} = 10^{-13} \text{cm}$
EDM		
naive expectation	10 ⁻⁸ <i>e</i> ⋅ cm	10 ^{−13} <i>e</i> · cm
observed	water molecule	neutron
	2 · 10 ⁻⁸ <i>e</i> · cm	$< 3 \cdot 10^{-26} \ensuremath{e} \cdot \ensuremath{cm}$



neutron EDM of $d_n = 3 \cdot 10^{-26} e \cdot \text{cm}$ corresponds to separation of u- from d-quarks of $\approx 5 \cdot 10^{-26} \text{cm}$

Operator $\vec{d} = q\vec{r}$

is odd under parity transformation ($\vec{r} \rightarrow -\vec{r}$):

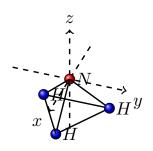
$$\mathcal{P}^{-1}\vec{d}\mathcal{P} = -\vec{d}$$

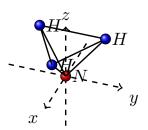
Consequences:

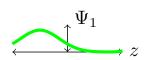
In a state $|a\rangle$ of given parity the expectation value is 0:

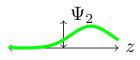
$$\begin{split} \left\langle a|\vec{d}|a\right\rangle &= -\left\langle a|\vec{d}|a\right\rangle \\ \text{but if } |a\rangle &= \alpha|P=+\rangle + \beta|P=-\rangle \\ \text{in general } \left\langle a|\vec{d}|a\right\rangle \neq 0 \Rightarrow \text{i.e. molecules} \end{split}$$

EDM of molecules









ground state: mixture of

$$egin{aligned} \Psi_{s} &= rac{1}{\sqrt{2}} \left(\Psi_{1} + \Psi_{2}
ight), \quad P = + \ \Psi_{a} &= rac{1}{\sqrt{2}} \left(\Psi_{1} - \Psi_{2}
ight), \quad P = - \end{aligned}$$

Molecules can have large EDM because of degenerated ground states with different parity

Molecules can have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite parity and cannot posses an EDM

 $P|\text{had}>=\pm 1|\text{had}>$

Molecules can have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite parity and cannot posses an EDM

$$P|\text{had}>=\pm 1|\text{had}>$$

unless

 \mathcal{P} and time reversal \mathcal{T} invariance are violated!

\mathcal{T} and \mathcal{P} violation of EDM

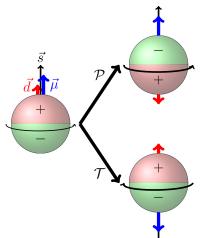
 \vec{d} : EDM

 $\vec{\mu}$: magnetic moment both || to spin

$$H = -\mu \vec{\sigma} \cdot \vec{B} - d\vec{\sigma} \cdot \vec{E}$$

$$T: H = -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{E}$$

$$P: H = -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{E}$$



 \Rightarrow EDM measurement tests violation of fundamental symmetries \mathcal{P} and $\mathcal{T}(\stackrel{\mathcal{CPT}}{=}\mathcal{CP})$

Symmetries in Standard Model

	electro-mag.	weak	strong
\mathcal{C}	✓	£	\checkmark
${\cal P}$	✓	£	(√)
$\mathcal{T} \stackrel{\mathcal{CPT}}{\rightarrow} \mathcal{CP}$	✓	(£)	(√)

- C and P are maximally violated in weak interactions (Lee, Yang, Wu)
- CP violation discovered in kaon decays (Cronin,Fitch) described by CKM-matrix in Standard Model
- \mathcal{CP} violation allowed in strong interaction but corresponding parameter $\theta_{QCD} \lesssim 10^{-10}$ (strong \mathcal{CP} -problem)

Sources of CP-Violation

Standard Model		
Weak interaction		
CKM matrix	ightarrow unobservably small EDMs	
Strong interaction		
θ_{QCD}	ightarrow best limit from neutron EDM	
beyond Standard Model		
e.g. SUSY	ightarrow accessible by EDM measurements	

Why is it interesting?

Matter-Antimatter Asymmetry

Excess of matter in the universe:

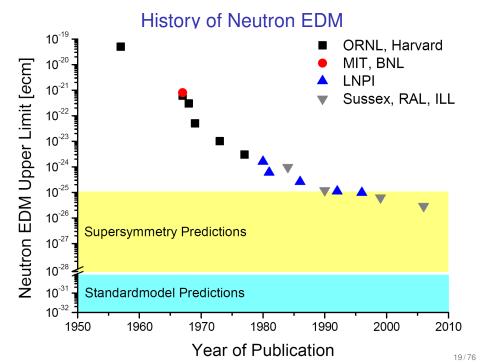
	observed	SM prediction
$\eta = rac{n_B - n_{ar{B}}}{n_{\gamma}}$	6×10^{-10}	10 ⁻¹⁸

Sakharov (1967): \mathcal{CP} violation needed for baryogenesis

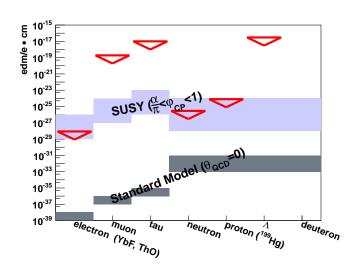
 \Rightarrow New \mathcal{CP} violating sources beyond SM needed to explain this discrepancy

They could manifest in EDMs of elementary particles

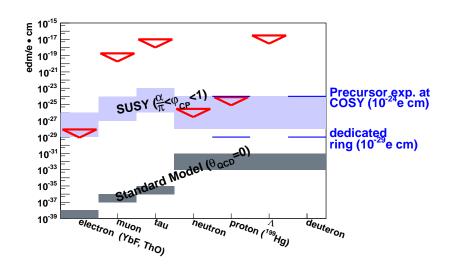
What do we know about EDMs?



EDM: Current Upper Limits



EDM: Current Upper Limits



FZ Jülich: EDMs of **charged** hadrons: $p, d, {}^{3}$ He

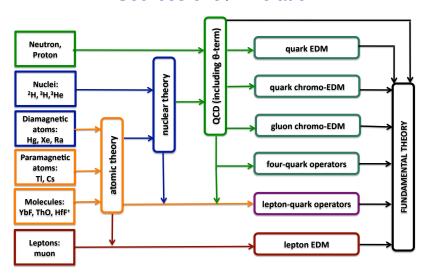
Why Charged Particle EDMs?

- no direct measurements for charged hadrons exist
- potentially higher sensitivity (compared to neutrons):
 - longer life time,
 - more stored protons/deuterons
- complementary to neutron EDM:

$$d_d \stackrel{?}{=} d_p + d_n \Rightarrow \text{access to } \theta_{QCD}$$

 EDM of one particle alone not sufficient to identify CP-violating source

Sources of CP Violation

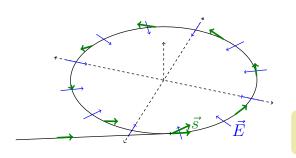


J. de Vries

How to measure charged particle EDMs?

Experimental Method: Generic Idea

For **all** EDM experiments (neutron, proton, atoms, ...): Interaction of \vec{d} with electric field \vec{E} For charged particles: apply electric field in a storage ring:



$$rac{\mathrm{d}ec{s}}{\mathrm{d}t}\propto extbf{d}ec{E} imesec{s}$$

In general:

$$rac{\mathrm{d}ec{oldsymbol{s}}}{\mathrm{d}t} = ec{\Omega} imes ec{oldsymbol{s}}$$

build-up of vertical polarization $s_{\perp} \propto |d|$

Experimental Requirements

- high precision storage ring

 (alignment, stability, field homogeneity)
- high intensity beams ($N = 4 \cdot 10^{10}$ per fill)
- polarized hadron beams (P = 0.8)
- large electric fields (E = 10 MV/m)
- long spin coherence time ($\tau = 1000 \, s$),
- polarimetry (analyzing power A = 0.6, acc. f = 0.005)

$$\sigma_{\text{stat}} \approx \frac{1}{\sqrt{Nf}\tau PAE} \quad \Rightarrow \sigma_{\text{stat}}(1\text{year}) = 10^{-29} \, e \cdot \text{cm}$$

challenge: get σ_{SVS} to the same level

Systematics

Major source:

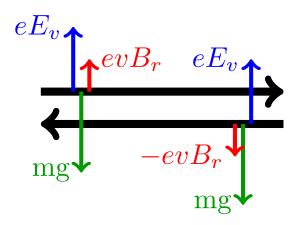
Radial B field mimics an EDM effect:

- Difficulty: even small radial magnetic field, B_r can mimic EDM effect if : $\mu B_r \approx dE_r$
- Suppose $d = 10^{-29} e \cdot \text{cm}$ in a field of $E_r = 10 \text{MV/m}$
- This corresponds to a magnetic field:

$$B_r = \frac{dE_r}{\mu_N} = \frac{10^{-22} \text{eV}}{3.1 \cdot 10^{-8} \text{eV/T}} \approx 3 \cdot 10^{-17} \text{T}$$

Solution: Use two beams running clockwise and counter clockwise, separation of the two beams is sensitive to B_r

Systematics



Sensitivity needed: 1.25 fT/ $\sqrt{\rm Hz}$ for $d=10^{-29}\,e\,{\rm cm}$ (possible with SQUID technology)

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E} + \frac{m}{e\,s} \mathbf{d} (\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

 Ω : angular precession frequency d: electric dipole moment

G: anomalous magnetic moment γ : Lorentz factor

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E} + \frac{m}{es} \mathbf{d} (\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

 Ω : angular precession frequency d: electric dipole moment

G: anomalous magnetic moment γ : Lorentz factor

dedicated ring: pure electric field,

freeze horizontal spin motion $\left(G - \frac{1}{\gamma^2 - 1}\right) = 0$

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + (G - \frac{1}{\sqrt{2} - 1}) \vec{V} \times \vec{E} + \frac{m}{es} \vec{o} (\vec{E} + \vec{V} \times \vec{B})] \times \vec{s}$$

 Ω : angular precession frequency d: electric dipole moment

G: anomalous magnetic moment γ : Lorentz factor

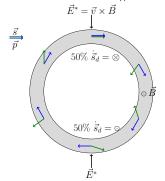
COSY: pure magnetic ring access to EDM via motional electric field $\vec{v} \times \vec{B}$, requires additional radio-frequency E and B fields to suppress $G\vec{B}$ contribution

Pure Magnetic Ring

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} \left(G \vec{B} + \frac{m}{e s} \frac{d\vec{v}}{\vec{v}} \times \vec{B} \right) \times \vec{s}$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.



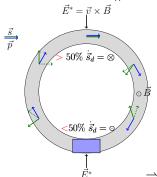
E* field in the particle rest frame tilts spin due to EDM up and down ⇒ no net EDM effect

Pure Magnetic Ring

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} \left(G \vec{B} + \frac{m}{e s} \frac{d\vec{v}}{\vec{v}} \times \vec{B} \right) \times \vec{s}$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.



E* field in the particle rest frame tilts spin due to EDM up and down ⇒ no net EDM effect

Use resonant "magic Wien-Filter" in ring $(\vec{E}_W + \vec{v} \times \vec{B}_W = 0)$:

 $E_W^* = 0 \rightarrow \text{part.}$ trajectory is not affected but

 $B_W^* \neq 0 \rightarrow \text{mag.}$ mom. is influenced

⇒ net EDM effect can be observed!

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{\sqrt{2} - 1}\right) \vec{v} \times \vec{E} + \frac{m}{e\,s} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

 Ω : angular precession frequency d: electric dipole moment

G: anomalous magnetic moment γ : Lorentz factor

COSY: pure magnetic ring access to EDM via motional electric field $\vec{v} \times \vec{B}$, requires additional radio-frequency E and B fields to suppress $G\vec{B}$ contribution

neglecting EDM term

spin tune:
$$\nu_{\mathcal{S}} pprox rac{|\vec{\Omega}|}{|\omega_{
m cyc}|} = \gamma \mathit{G}, \qquad (\vec{\omega}_{\it cyc} = rac{\it e}{\gamma \it m} \, \vec{\it B})$$

Results of first test measurements

Cooler Synchrotron COSY

COSY provides (polarized) protons and deuterons with $p=0.3-3.7 \mbox{GeV}/c$

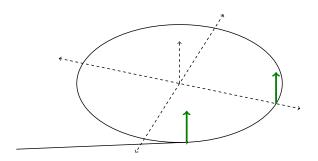
⇒ Ideal starting point for charged particle EDM searches

R & D at COSY

- maximize spin coherence time (SCT)
- precise measurement of spin precession (spin tune)
- rf- Wien filter design and construction
- tests of electro static deflectors (goal: field strength > 10 MV/m)
- development of high precision beam position monitors
- polarimeter development
- spin tracking simulation tools

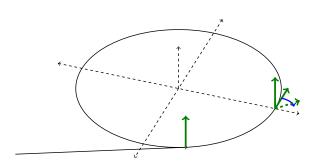
Experimental Setup

• Inject and accelerate vertically polarized deuterons to $p \approx 1 \; \text{GeV/}c$



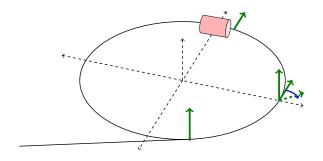
Experimental Setup

- Inject and accelerate vertically polarized deuterons to $p \approx 1~{\rm GeV/}c$
- flip spin with help of solenoid into horizontal plane



Experimental Setup

- Inject and accelerate vertically polarized deuterons to $p \approx 1 \text{ GeV/}c$
- flip spin with help of solenoid into horizontal plane
- Extract beam slowly (in 100 s) on target
- Measure asymmetry and determine spin precession

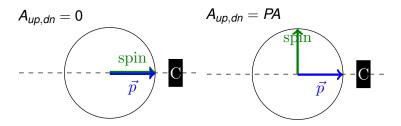


Asymmetry Measurements

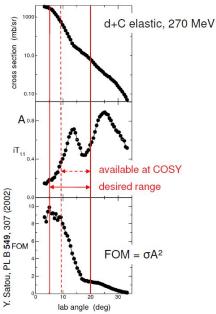
• Detector signal $N^{up,dn} \propto (1 \pm PA \sin(\gamma G f_{rev} t))$

$$A_{up,dn} = \frac{N^{up} - N^{dn}}{N^{up} + N^{dn}} = PA \sin(\gamma G f_{rev} t) = PA \sin(\nu_s n_{turn})$$

A: analyzing power, P: polarization



Polarimetry



Cross Section & Analyzing Power for deuterons

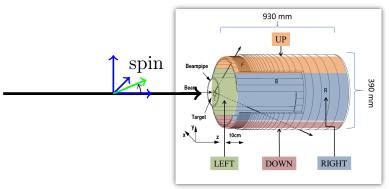
$$N_{up,dn} \propto \ (1 \pm P A \sin(\nu_s f_{rev} t))$$

$$A_{up,dn} = rac{N^{up} - N^{dn}}{N^{up} + N^{dn}}$$
 $= P A \sin(
u_s f_{rev} t)$
 $= P A \sin(
u_s n_{turn})$

A: analyzing powerP: beam polarization

Polarimeter

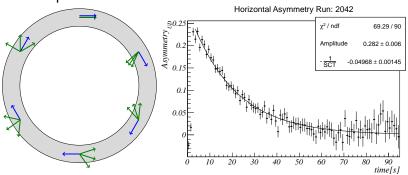
elastic deuteron-carbon scattering Up/Down asymmetry \propto horizontal polarization $\rightarrow \nu_s = \gamma G$ Left/Right asymmetry \propto vertical polarization \rightarrow σ



$$N_{up,dn} \propto 1 \pm PA \sin(\nu_s n_{turn}), \quad f_{rev} \approx 750 \, \text{kHz}$$

Results: Spin Coherence Time (SCT)

Short Spin Coherence Time



unbunched beam

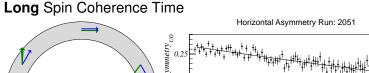
$$\Delta p/p = 10^{-5} \Rightarrow \Delta \gamma/\gamma = 2 \cdot 10^{-6}, T_{rev} \approx 10^{-6} \, \mathrm{s}$$

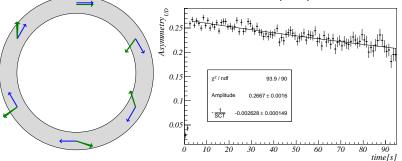
 \Rightarrow decoherence after < 1 s

cooled bunched beam eliminates 1st order effects in $\Delta p/p$

$$\Rightarrow$$
 SCT τ = 20 s

Results: Spin Coherence Time (SCT)

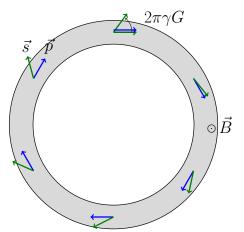




using correction sextupole to correct for higher order effects leads to SCT of $\tau = 400 \, \text{s}$

Spin Tune ν_s

Spin tune: $\nu_s = \gamma G = \frac{\text{nb. of spin rotations}}{\text{nb. of particle revolutions}}$

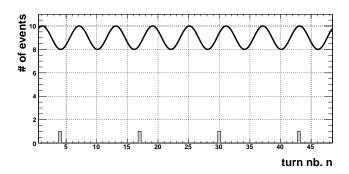


deuterons: $p_d = 1 \text{ GeV/}c$ ($\gamma = 1.13$), G = -0.14256177(72)

$$\Rightarrow \nu_s = \gamma G \approx -0.161$$

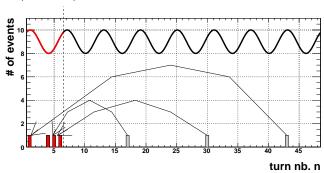
Spin Tune ν_s measurement

- Problem: detector rate ≈ 5 kHz, f_{rev} = 750kHz
 ⇒ only 1 hit every 25th period
- not possible to use usual χ^2 -fit
- use unbinned Maximum Likelihood (under investigation)

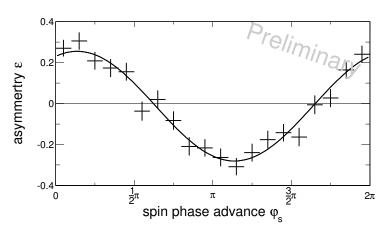


Spin Tune ν_s measurement

- map all events into first period ($T=1/(\nu_s f_{rev})\approx 8\mu s$) and perform χ^2 -fit (requires knowledge of $\nu_s f_{rev}$)
- Analysis is done in macroscopic time bins of 10^6 turns ($\approx 1.3 \text{ s}$)

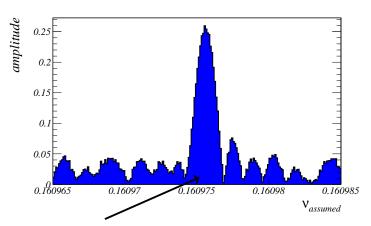


Asymmetry in 1st period



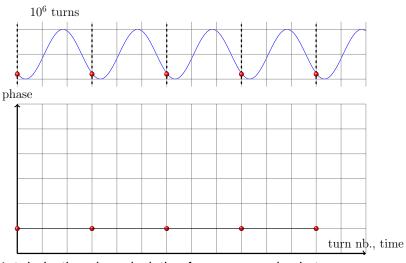
• only works if $T_s = \frac{1}{\nu_s f_{rev}}$ is correct.

Scan of ν_s



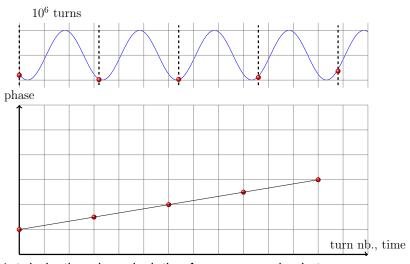
- allows for $\sigma_{\nu_{\rm s}} \approx 10^{-6}$
- now fix ν_s at maximum and look at phase vs. turn number phase is determined for turn intervals of 10⁶ turns

Phase Measurements



1st derivative gives deviation from assumed spin tune

Phase Measurements



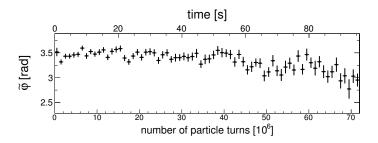
1st derivative gives deviation from assumed spin tune

Phase vs. turn number time [s] 20 40 60 80 0.160975409 -0.16097540**7** 0.160975405 20 30 50 60 number of particle turns [10⁶]

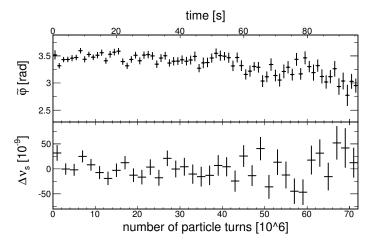
$$u_s(n) = \nu_s^0 + \frac{1}{2\pi} \frac{\mathrm{d}\tilde{\varphi}}{\mathrm{d}n}$$

 $\tilde{\phi}$ [rad]

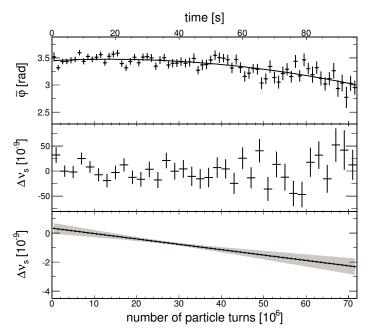
Results: Spin Tune ν_s



Results: Spin Tune ν_s



Results: Spin Tune ν_s



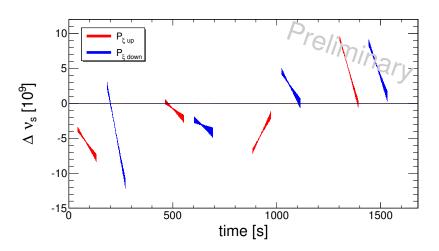
Spin Tune Measurement

- precision of spin tune measurement 10⁻¹⁰ in one cycle
- spin rotation due to electric dipole moment:

$$v_s = \frac{vm\gamma d}{es} = 5 \cdot 10^{-11}$$
 for $d = 10^{-24} e \, \mathrm{cm}$ (in addition rotations due to G and imperfections)

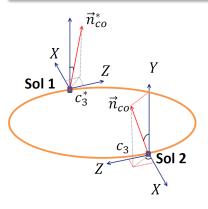
- Compare to muon g-2: $\sigma_{\nu_s}\approx 3\cdot 10^{-8}$ per year main difference: measurement duration 600μ s compared to $100\,\mathrm{s}$
- spin tune measurement can now be used as tool to investigate systematic errors

Spin Tune as tool to investigate systematics



Spin Tune as tool to investigate systematics

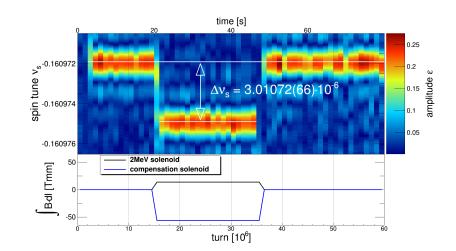
$\nu_s = \gamma G + \text{imperfections kicks}$

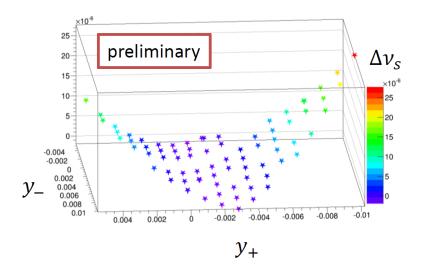


- Create artificial imperfections with solenoids/steerers
- measure spin tune change $\Delta \nu_s$
- expectation $\Delta \nu_{s} \propto (y_{\pm} a_{\pm})^{2}$ a_{\pm} : kicks due to imperfections,

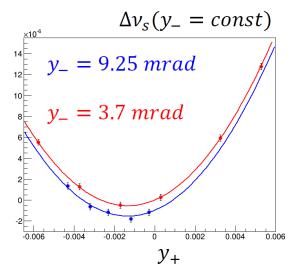
 y_+ : kicks due to solenoids

Spin Tune jumps





- parabolic behavior expected from simulations
- $y^{\pm}=\frac{\chi_1\pm\chi_2}{2}$, $\chi_{1,2}$: solenoid strength for perfect machine, minimum should be at $y^+=0$

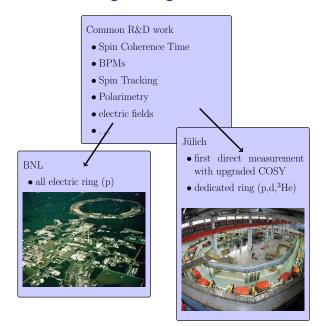


- parabolic behavior expected from simulations
- $y^{\pm}=\frac{\chi_1\pm\chi_2}{2}$, $\chi_{1,2}$: solenoid strength for perfect machine, minimum should be at $y^+=0$

JEDI Collaboration

- JEDI = Jülich Electric Dipole Moment Investigations
- ≈ 100 members
 (Aachen, Daejeon, Dubna, Ferrara, Grenoble, Indiana, Ithaca, Jülich, Krakow, Michigan, Minsk, Novosibirsk, St. Petersburg, Stockholm, Tbilisi, . . .)
- ≈ 10 PhD students

Storage Ring EDM Efforts



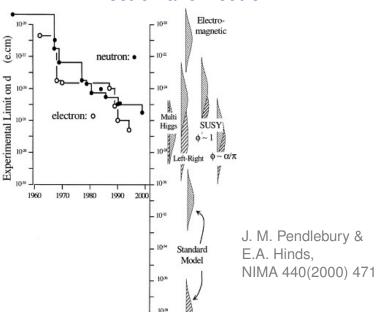
Summary & Outlook

- EDMs of elementary particles are of high interest to disentangle various sources of CP violation searched for to explain matter - antimatter asymmetry in the Universe
- EDM of charged particles can be measured in storage rings
- Experimentally very challenging because effect is tiny
- First promising results from test measurements at COSY:

spin coherence time: few hundred seconds spin tune precision: 10^{-10} in one cycle

Spare

Electron and Neutron EDM



EDM: SUSY Limits

electron:

MSSM:
$$\varphi \approx 1 \Rightarrow d = 10^{-24} - 10^{-27} e \cdot \text{cm}$$
 $\varphi \approx \alpha/\pi \Rightarrow d = 10^{-26} - 10^{-30} e \cdot \text{cm}$

neutron:

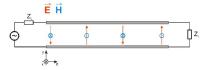
MSSM:
$$d = 10^{-24} e \cdot \text{cm} \cdot \sin \phi_{CP} \frac{200 \text{GeV}}{M_{SUSY}}$$

Electrostatic Deflectors

- Electrostatic deflectors from Fermilab ($\pm 125 kV$ at 5 cm = 5 MV/m)
- \bullet large-grain Nb at plate separation of a few cm yields \approx 20MV/m

Wien Filter

Conventional design R. Gebel, S. Mey (FZ Jülich)



stripline design D. Hölscher, J. Slim (IHF RWTH Aachen)

2. Pure Electric Ring

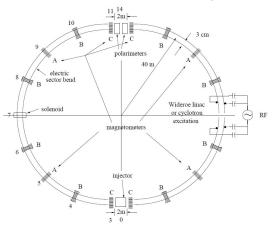


Figure 3: An all-electric storage ring lattice for measuring the electric dipole moment of the proton. Except for having longer straight sections and separated beam channels, the all-in-one lattice of Fig. 1 is patterned after this lattice. Quadrupole and sextupole families, and tunes and lattice functions of the allin-one lattice of Fig. 1 will be quite close to those given for this lattice in reference[3]. The match will be even closer with magnetic field set to zero for proton operation.

Brookhaven National Laboratory (BNL) Proposal

3. Combined \vec{E}/\vec{B} ring

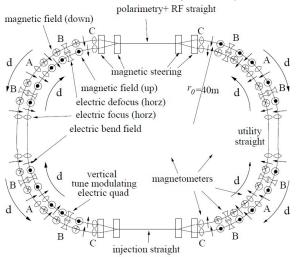


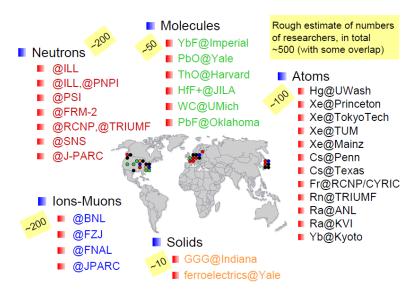
Figure 1: "All-In-One" lattice for measuring EDM's of protons, deuterons, and helions.

Under discussion at Forschungszentrum Jülich (design: R. Talman)

Summary of different options

1.) pure magnetic ring (Jülich)	existing (upgraded) COSY ring can be used, shorter time scale	lower sensitivity
2.) pure electric ring (BNL)	no \vec{B} field needed	works only for p
3.) combined ring (Jülich)	works for $p, d, {}^{3}He, \dots$	both \vec{E} and \vec{B} required

EDM Activities Around the World



K. Kirch

Systematics

- Splitting of beams: $\delta y = \pm \frac{\beta c R_0 B_r}{E_r Q_y^2} = \pm 1 \cdot 10^{-12} \, \text{m}$
- $Q_{V} \approx 0.1$: vertical tune
- Modulate $Q_y = Q_y^0 (1 m\cos(\omega_m t)), \ m \approx 0.1$
- Splitting causes B field of $\approx 0.4 \cdot 10^{-3} \, \text{fT}$
- in one year: 10^4 fills of $1000 \, \text{s} \Rightarrow \sigma_B = 0.4 \cdot 10^{-1} \text{fT}$ per fill needed
- Need sensitivity 1.25 fT/ $\sqrt{\text{Hz}}$

D. Kawall

Systematics

