Matter and the Universe

Towards Electric Dipole Moment Measurements at Storage Rings

Jörg Pretz, RWTH Aachen University & Forschungszentrum Jülich

HELMHOLTZ

Towards EDMs at Storage Rings

Jörg Pretz

Introduction: Electric Dipole Moments

- fundamental property of particles
- violates \mathcal{P} and $\mathcal{T} \stackrel{\mathcal{CPT}}{\equiv} \mathcal{CP}$
- search for CP-violation beyond the Standard Model to explain matter dominance in the Universe

Motivation: Sources of CP-Violation

Standard Model			
Weak interaction			
CKM matrix	ightarrow unobservably small EDMs		
Strong interaction			
θ_{QCD}	\rightarrow best limit from neutron EDM		
beyond Standard Model			
e.g. SUSY	\rightarrow accessible by EDM measurements		

EDM: Current Upper Limits

EDM: Current Upper Limits

FZ Jülich: EDMs of **charged** hadrons: $p, d, {}^{3}$ He

PAGE 5

Towards EDMs at Storage Rings

Jörg Pretz

Why Charged Particle EDMs?

- no direct measurements for charged hadrons exist
- potentially higher sensitivity (compared to neutrons):
 - longer life time,
 - more stored protons/deuterons
- complementary to neutron EDM:

 $d_d \stackrel{?}{=} d_p + d_n \Rightarrow \text{access to } \theta_{QCD}$

• EDM of one particle alone not sufficient to identify *CP*-violating source

Experimental Method: Generic Idea

For **all** EDM experiments (neutron, proton, atoms, ...): Interaction of \vec{d} with electric field \vec{E} For charged particles: apply electric field in a storage ring:

build-up of vertical polarization $s_{\perp} \propto |d|$

Experimental Requirements

- high precision storage ring diagnostics: alignment, stability, field homogeneity
- high intensity beams ($N = 4 \cdot 10^{10}$ per fill)
- polarized hadron beams (P = 0.8)
- large electric fields (E = 10 MV/m)
- long spin coherence time ($\tau = 1000 \text{ s}$),
- polarimetry (analyzing power A = 0.6, acc. f = 0.005)

$$\sigma_{\text{stat}} \propto \frac{1}{\sqrt{Nt}\tau PAE} \Rightarrow \sigma_{\text{stat}}(1\text{year}) = 10^{-29} \, e \cdot \text{cm}$$

challenge: get σ_{sys} to the same level

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} + \frac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

Ω: angular precession frequency *d*: electric dipole moment *G*: anomalous magnetic moment γ: Lorentz factor

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E} + \frac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

- Ω: angular precession frequency *d*: electric dipole moment*G*: anomalous magnetic moment γ: Lorentz factor
- **dedicated ring:** pure electric field, freeze horizontal spin motion $\left(G - \frac{1}{\gamma^2 - 1}\right) = 0$

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{\sqrt{2}-1}\right)\vec{v} \times \vec{E} + \frac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

- Ω: angular precession frequency d: electric dipole momentG: anomalous magnetic moment γ: Lorentz factor
- **COSY:** pure magnetic ring access to EDM via motional electric field $\vec{v} \times \vec{B}$, requires radio-frequency *E* and *B* fields

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{\sqrt{2}-1}\right)\vec{v} \times \vec{E} + \frac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

- Ω: angular precession frequency d: electric dipole momentG: anomalous magnetic moment γ: Lorentz factor
- **COSY:** pure magnetic ring access to EDM via motional electric field $\vec{v} \times \vec{B}$, requires radio-frequency *E* and *B* fields

neglecting EDM term spin tune: $\nu_s \approx \frac{|\vec{\Omega}|}{\omega_{rev}} = \gamma G$

Spin Tune ν_s nb. of spin rotations Spin tune: $\nu_s = \gamma G = \frac{1}{1}$ nb. of particle revolutions $2\pi\gamma G$ $\frac{\vec{s}}{\vec{p}}$ $\odot \vec{B}$

deuterons: $p_d = 1$ GeV/c ($\gamma = 1.13$), G = -0.14256177(72)

 $\Rightarrow \nu_s = \gamma G \approx -0.161$

Test Measurements at COSY

unique storage ring for polarized protons and deuterons

⇒ ideal starting point for charged hadron EDMs

Recent achievements

- Spin tune: $\overline{\nu_s} = -0.16097 \cdots \pm 10^{-10}$ in 100 s (for G = 0, $d = 10^{-24} e \cdot cm \Rightarrow$ spin tune = $5 \cdot 10^{-11}$)
- Spin coherence time: $\tau = 400 \text{ s}$

Results: Spin Tune

up-down asymmetry in elastic d-carbon scattering: $A(t) \propto e^{-t/\tau} \sin(\Omega t)$

\rightarrow Poster Dennis Eversmann, Fabian Hinder

Results: Spin Coherence Time (SCT)

Short Spin Coherence Time

cooled bunched beam \Rightarrow SCT τ = 20 s

Results: Spin Coherence Time (SCT)

Long Spin Coherence Time

using correction sextupole to correct for higher order effects leads to SCT of τ =400 s

International Framework

PAGE 18

Jörg Pretz

JEDI Collaboration

- **JEDI** = **J**ülich **E**lectric **D**ipole Moment **I**nvestigations
- ≈ 100 members
 (Aachen, Dubna, Ferrara, Indiana, Ithaca, Jülich, Krakow, Michigan, Minsk, Novosibirsk, St. Petersburg, Stockholm, Tbilisi, ...)
- \approx 10 PhD students
- part of JARA FAME (Forces And Matter Experiments)

Summary & Outlook

- EDMs of charged particles can be measured at storage rings
- COSY at Forschungszentrum Jülich is ideal place to perform such measurements
- PoF 3:

	2015	2016	2017	2018	2019
systematic studies (SCT, spin tune, diagnostics, polarimetry, deflectors, \dots)					
design report dedicated ring		lesign report ledicated ring			
			L		direct p, d EDM @ COSY

Towards EDMs at Storage Rings Jörg Pretz

History of Neutron EDM Limits

Electron and Neutron EDM

EDM: SUSY Limits

electron:

MSSM:
$$\varphi \approx 1 \Rightarrow d = 10^{-24} - 10^{-27} e \cdot cm$$

 $\varphi \approx \alpha / \pi \Rightarrow d = 10^{-26} - 10^{-30} e \cdot cm$

neutron:

MSSM:
$$d = 10^{-24} e \cdot \text{cm} \cdot \sin \phi_{CP} \frac{200 \text{GeV}}{M_{SUSY}}$$

Sources of \mathcal{CP} Violation

J. de Vries

Electrostatic Deflectors

- Electrostatic deflectors from Fermilab (\pm 125kV at 5 cm \doteq 5MV/m)
- large-grain Nb at plate separation of a few cm yields \approx 20MV/m

Wien Filter

Conventional design R. Gebel, S. Mey (FZ Jülich)

stripline design D. Hölscher, J. Slim (IHF RWTH Aachen) Polarimetry

Cross Section & Analyzing Power for deuterons

 $N^{up,dn} \propto$ $(1 \pm PA \sin(\gamma Gf_{rev}t))$

$$egin{aligned} & \mathsf{A}_{up,dn} = rac{\mathsf{N}^{up} - \mathsf{N}^{dn}}{\mathsf{N}^{up} + \mathsf{N}^{dn}} \ &= \mathsf{P}\,\mathsf{A}\,\sin(\gamma G f_{rev} t) \end{aligned}$$

A : analyzing power P : beam polarization

Polarimeter

elastic deuteron-carbon scattering Left/Right asymmetry \propto vertical polarization \propto *d* Up/Down asymmetry \propto horizontal polarization $\propto \gamma G$

Paper from F. Wilczek

- ... unique, extraordinarily sensitive way to probe ... violation of microscopic time-reversal invariance.
- ... put the best limits on the θ parameter, ...
- ...θ parameter is tied up with profound theoretical ideas,
 ...a plausible resolution of the cosmological dark matter problem. (axions)
- ... constrain many implementations of supersymmetry ...
- If supersymmetry is valid, it very plausibly leads to electric dipole moments not far beyond present-day limits, and within the scope of known experimental technique.

Frank Wilczek:

"Importance and Promise of Electric Dipole Moments", Jan. 2014 http://www.usparticlephysics.org/node/901/webform-results/public)

1. Pure Magnetic Ring

$$ec{\Omega} = rac{e\hbar}{mc} \left(G ec{B} + rac{1}{2} \eta ec{v} imes ec{B}
ight)$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

 E^* field in the particle rest frame tilts spin due to EDM up and down \Rightarrow **no net EDM effect**

1. Pure Magnetic Ring

$$ec{\Omega} = rac{e\hbar}{mc} \left(G ec{B} + rac{1}{2} \eta ec{v} imes ec{B}
ight)$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

 E^* field in the particle rest frame tilts spin due to EDM up and down \Rightarrow **no net EDM effect**

Use resonant "magic Wien-Filter" in ring $(\vec{E} + \vec{v} \times \vec{B} = 0)$:

 $E^* = 0 \rightarrow \text{part.}$ trajectory is not affected but

 $B^* \neq 0 \rightarrow$ mag. mom. is influenced

⇒ net EDM effect can be observed!

Jörg Pretz

2. Pure Electric Ring

Figure 3: An all-electric storage ring lattice for measuring the electric dipole moment of the proton. Except for having longer straight sections and separated beam channels, the all-in-one lattice of Fig. 1 is patterned after this lattice. Quadrupole and sextupole families, and tunes and lattice functions of the allin-one lattice of Fig. 1 will be quite close to those given for this lattice in reference[3]. The match will be even closer with magnetic field set to zero for proton operation.

Brookhaven National Laboratory (BNL) Proposal

3. Combined \vec{E}/\vec{B} ring

Figure 1: "All-In-One" lattice for measuring EDM's of protons, deuterons, and helions.

Under discussion at Forschungszentrum Jülich (design: R. Talman)

PAGE 34

	Towards E	DMs at S	Storage	Rinas
--	-----------	----------	---------	-------

Jörg Pretz

Summary of different options

	_	_
	\odot	\odot
1.) pure magnetic ring (Jülich)	existing (upgraded) COSY ring can be used , shorter time scale	lower sensitivity
2.) pure electric ring (BNL)	no \vec{B} field needed	works only for p
3.) combined ring (Jülich)	works for $p, d, {}^{3}\text{He}, \dots$	both <i>Ē</i> and <i>B</i> required

EDM Activities Around the World

K. Kirch

PAGE 36

Investments EDM Precursor Experiment

	price per	nb. of	total/
	unit/ kEuro	units	kEuro
Beam Diagnostics			
Beam Position Monitors	70	20	1,400
Beam Profile Monitors	150	2	300
Beam Current Monitor	300	1	300
Steerer/Power Supply	20	20	400
HF Generator	250	1	250
Power Supply RF	250	1	250
Feed Back System	50	1	50
total			2,950

according to table on page 47 in proposal

PAGE 37

Systematics

Major source: Radial *B* field mimics an EDM effect:

- Difficulty: even small radial magnetic field, *B_r* can mimic EDM effect if :μ*B_r* ≈ *dE_r*
- Suppose $d = 10^{-29} e cm$ in a field of E = 10 MV/m
- This corresponds to a magnetic field:

$$B_r = \frac{dE_r}{\mu_N} = \frac{10^{-22} eV}{3.1 \cdot 10^{-8} eV/T} \approx 3 \cdot 10^{-17} T$$

(Earth Magnetic field $\approx 5 \cdot 10^{-5} T$)

Solution: Use two beams running clockwise and counter clockwise, separation of the two beams is sensitive to B_r

Systematics

• Splitting of beams:
$$\delta y = \pm \frac{\beta c R_0 B_r}{E_r Q_y^2} = \pm 1 \cdot 10^{-12} \text{ nm}$$

- $Q_y \approx 0.1$: vertical tune
- Modulate $Q_y = Q_y^0 (1 m\cos(\omega_m t)), \ m \approx 0.1$
- Splitting causes *B* field of $\approx 0.4 \cdot 10^{-3}$ fT
- in one year: 10⁴ fills of 1000 s ⇒ σ_B = 0.4 · 10⁻¹ fT per fill needed
- Need sensitivity $1.25 \, \text{fT} / \sqrt{\text{Hz}}$

PAGE 39

Systematics

Jörg Pretz