Electric Dipole Moments of Charged Particles – Activities at COSY/Forschungszentrum Jülich - Plans for a new Storage Ring at CERN

J. Pretz RWTH Aachen & FZ Jülich

CERN, Physics Beyond Colliders, November 2017

Outline

- Electric Dipole Moment (EDM) requires dedicated new storage ring (→ long term project)
- this talk:
 - intermediate steps using existing storage ring COSY at Forschungszentrum Jülich, Germany
 - design of a new storage ring (at CERN)

Electric Dipole Moments (EDM)

- permanent separation of positive and negative charge
- fundamental property of particles (like magnetic moment, mass, charge)
- existence of EDM only possible via violation of time reversal *T* (^C*PT*</sup> *CP*) and parity *P* symmetry
- close relation to origin of matter-antimatter asymmetry in in the universe

Experimental Method: Generic Idea

For **all** EDM experiments (neutron, proton, atoms, ...): Interaction of \vec{d} with electric field \vec{E} For charged particles: apply electric/magnetic field in a storage ring:

build-up of vertical polarization $s_{\perp} \propto |d|$

Requirements

- storage ring for protons and/or deuterons ($p \approx 1 \text{GeV}/c$)
- polarized hadron beams (P = 0.8)
- high intensity beams ($N = 4 \cdot 10^{10}$ per fill)
- long spin coherence time ($\tau = 1000 \text{ s}$),
- large electric fields (E = 10 MV/m)
- polarimetry (analyzing power A = 0.6, acc. f = 0.005)

$$\sigma_{\text{stat}} \approx \frac{\hbar}{\sqrt{Nf}\tau PAE} \Rightarrow \sigma_{\text{stat}}(1\text{year}) = 10^{-29} \text{ e-cm}$$

challenge: get σ_{sys} to the same level

EDM Limits

Storage Ring EDM

- Only storage ring measurement: muon (parasitic measurement to muon g - 2)
- COSY at Forschungszentrum Jülich, Germany:

magnetic storage ring,

pol. proton and **deuteron** beams up to 3 GeV/*c*

 \rightarrow ideal starting point

Cooler Synchrotron COSY

Recent achievements and activities

- Spin coherence time: τ > 1000 s (PRL 117, 054801 (2016))
- Spin tune: $\overline{\nu_s} = -0.16097 \cdots \pm 10^{-10}$ in 100 s (PRL 115, 094801 (2015))
 - Spin feedback: polarisation vector kept within 12 degrees (PRL 119 014801 (2017))
 - Polarimetry
 - Deflector development
 - beam instrumentation
 - Spin Tracking (benchmarking of codes)

based on this: first measurement of deuteron EDM in 2018 (proof of principle)

Spin Precession

Spin precession frequency: $f_{spin} = \gamma G f_{rev} \approx 120 \text{ KHz}$ with $\Delta \gamma \approx 10^{-6} \rightarrow \text{decoherence after } 10^6 \text{ turns} \cong 1 \text{ s}$

gyromagnetic anomaly G(deuteron) = -0.142561789

1.) Spin Coherence Time (SCT)

1.) Spin Coherence Time (SCT)

2.) Spin Tune ν_s

• CPEDM (charged particle EDM) collaboration established

Kick-off meeting 1-2 March 2017

Work packages

WP	Institute	Comment
Science case	KAIST/FZJ/CERN	
Ring design	KAIST/FZJ/CERN	different options
Beam control	FZJ	cooling, feedbacks
Beam delivery	CERN/FZJ	Source, acceleration, injection
Ring components I	CERN	RF, vacuum, Beam Instr.
Ring components II	KAIST/FZJ/CERN	Shielding, deflectors
Polarimetry	FZJ	p,d, targets, systematics
Siting at CERN	CERN	Site,CE,cost
Systematics	KAIST/FZJ/CERN	alignment, Br, orbit
		phase space CW/CCW,
AIST: Korea Advanced Institute of Science & Technology		

KAIST: Korea Advanced Institute of Science & Technology FZJ: Forschungszentrum Jülich

Goal: Feasibility study for proton/deuteron storage ring

Options for an EDM ring

Possible Site at CERN

Summary

- EDMs are unique probe to search for new CP-violating interactions
- charged particle EDM searches require new high precision storage rings
- Activities are underway at magnetic storage ring COSY at Forschungszentrum Jülich
- Collaboration (CPEDM) established to investigate possibility for the construction of new storage ring Goal: Feasibility study end of 2018