Spin Polarisation Experiments at Storage Rings: Axion Searches and Electric Dipole Moments

J. Pretz RWTH Aachen & FZ Jülich

Mainz, Dec. 2023

Motivation

Standard Model of Particle Physics successful but ...

- Fails to explain matter-antimatter asymmetry in the universe
- Why is CP-violation in the strong sector not present (although allowed)?
- What does Dark Matter consists of?

Outline

Introduction:

Electric Dipole Moments and connection to axions/ALPs

• Experimental Methods for charged particles Observing Spin precession

• Experiments & Results:

on permanent & oscillating electric dipole moments

Introduction

Electric Dipoles

	atomic physics	hadron physics
charges	е	
$ \vec{r}_{1} - \vec{r}_{2} $	1 Å= 10 ⁻⁸ cm	
EDM		
naive expectation	$10^{-8} e \cdot cm$	
observed	water molecule	
	4 · 10 ^{−9} <i>e</i> · cm	

	atomic physics	hadron physics
charges	е	е
$ \vec{r}_{1} - \vec{r}_{2} $	1 Å= 10 ⁻⁸ cm	$1 \mathrm{fm} = 10^{-13} \mathrm{cm}$
EDM		
naive expectation	$10^{-8} e \cdot cm$	$10^{-13} e \cdot cm$
observed	water molecule	neutron
	4 · 10 ^{−9} <i>e</i> · cm	< 1.8 · 10 ⁻²⁶ <i>e</i> · cm

Operator $\vec{d} = q\vec{r}$

 \vec{d} is odd under parity transformation ($\vec{r} \rightarrow -\vec{r}$):

 $\mathcal{P}^{-1}\vec{d}\mathcal{P}=-\vec{d}$

Consequences: In a state $|a\rangle$ of given parity the expectation value is 0:

$$\left\langle a | \vec{d} | a \right\rangle = - \left\langle a | \vec{d} | a \right\rangle$$

but if $| a
angle = lpha | P = +
angle + eta | P = -
angle$
in general $\left\langle a | \vec{d} | a
ight
angle \neq 0 \Rightarrow$ i.e. molecules

Molecules can have large EDM because of degenerated ground states with different parity

Molecules can have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite parity and cannot posses an EDM $P|had >= \pm 1|had >$

Molecules can have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite parity and cannot posses an EDM $P|had >= \pm 1|had >$

unless

 \mathcal{P} and time reversal \mathcal{T} invariance are violated! In this case: $|had \rangle = |\mathbf{P} = + \rangle + \epsilon |\mathbf{P} = - \rangle$

${\mathcal T}$ and ${\mathcal P}$ violation of EDM

 $\vec{\mu}$: magnetic moment (MDM) both || to spin \vec{s}

 \Rightarrow EDM measurement tests violation of fundamental symmetries \mathcal{P} and $\mathcal{T}(\stackrel{\mathcal{CPT}}{=} \mathcal{CP})$

Electric Dipole Moments (EDM)

- permanent separation of positive and negative charge
- fundamental property of particles (like magnetic moment, mass, charge)
- existence of EDM only possible via violation of time reversal *T*^{CPT} ⊂*P* and parity *P* symmetry
- close connection to "matter-antimatter" asymmetry
- axion field leads to oscillating EDM $d = d_{DC} + d_{AC} \cos(\omega_a t + \varphi_a)$ $m_a c^2 = \hbar \omega_a$

Axions/Axion Like Particles (ALPs)

- hypothetical pseudoscalar elementary particle postulated by Peccei,Quinn,Wilczek,Weinberg to resolve the strong CP problem
- axion are also Dark Matter candidates
- axion like particles (ALP): similar properties as axions, (but ALPs don't solve the strong QCD problem)
- huge experimental effort to search for axion/ALPs (haloscopes, helioscopes, light shining through the wall, mainly coupling to photons)
- in storage rings with polarized beams axion-gluon/nucleon coupling can be studied

For low axion masses, if axions saturate dark matter they can be described by classical field: $a(t) = a_0 \cos(\omega_a t + \varphi_a)$, $m_a c^2 = \hbar \omega_a$, Coupling $\propto \frac{1}{f_a} \propto m_a$ [1]

EDM Experiments/Activities around the world

Results

Impressive Limits, but no finite EDM found yet. No direct measurement on charged hadrons.

Why EDMs for many different particle species?

J. de Vries

Experimental Methods

Experimental Method

Observe Spin Precesison in electric and magnetic fields:

$$ec{\Omega} = rac{-m{d}ec{m{E}} - \mu ec{m{B}}}{|ec{m{S}}|}\,, \qquad \dot{ec{m{S}}} = ec{\Omega} imes ec{m{S}}$$

Order of magnitude: Neutron in earth *B*-field: $\Omega \approx 9000 \text{ s}^{-1}$ $d_n = 1 \times 10^{-26} \text{ e} \cdot \text{cm}$ in electric field $E = 10^7 \text{V/m}$: $\Omega \approx 3 \times 10^{-6} \text{ s}^{-1}$

Even more complicated for charged particles:

Experimental Method for charged particle: Storage Ring

build-up of vertical polarization $s_{\perp} \propto d$, if $\vec{s}_{horz} || \vec{p}$ (frozen spin)

Experimental Method for charged particle: Storage Ring

build-up of vertical polarization $s_{\perp} \propto d$, if $\vec{s}_{horz} || \vec{p}$ (frozen spin)

Spin Precession: Thomas-BMT Equation

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$$

$$= \vec{\Omega}_{MDM} = \vec{\Omega}_{EDM}$$
electric dipole moment (EDM): $\vec{d} = \eta \frac{q\hbar}{2mc} \vec{s}$,
magnetic dipole moment (MDM): $\vec{\mu} = 2(G+1) \frac{q\hbar}{2m} \vec{s}$

Note:
$$\eta = 2 \cdot 10^{-15}$$
 for $d = 10^{-29} e$ cm, $G \approx 1.79$ for protons

Spin Precession: Thomas-BMT Equation

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$$

$$\vec{\Omega}_{\text{MDM}} = 0, \quad \text{frozen spin} \qquad = \vec{\Omega}_{\text{EDM}}$$

frozen spin achievable with pure electric field if $G = \frac{1}{\gamma^2 - 1}$,
works only for $G > 0$, e.g. proton

or with special combination of *E*, *B* fields and γ , i.e. momentum

Momentum and ring radius for proton in frozen spin condition

Two options:

• Pure electric ring: p = 707MeV, bending radius ≈ 50 m at E=8 MV/m

★ combined prototype ring: p = 300 MeV, bending radius \approx 9 m at E=7 MV/m

Different Options

	\odot	
3.) pure electric ring	no \vec{B} field needed,	works only for particles
	\circlearrowright , \circlearrowright beams simultaneously	with <i>G</i> > 0 (e.g. <i>e</i> , <i>p</i>)
2.) combined ring	works for $e, p, d, {}^{3}He$,	both \vec{E} and \vec{B}
	smaller ring radius	B field reversal for \circlearrowleft , \circlearrowright
		required
1.) pure magnetic ring	existing (upgraded) COSY	lower sensitivity,
	ring can be used,	precession due to <i>G</i> ,
		i.e. no frozen spin

Experiments & Results

Precursor Experiment

COoler SYnchrotron COSY

- pol. deuteron beam $p \approx 970 \text{MeV}/c$
- polarization $P \approx 0.40$
- $\approx 10^9$ stored particles per 300 s cycle
- $\Omega_{\mathrm{MDM}} \approx 2\pi \cdot 120 \,\mathrm{kHz}$
- JEDI (Jülich Electric Dipole moment Investigations) collaboration

Principle of EDM measurement at magnetic storage ring

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

 E^* field in the particle rest frame tilts spin due to EDM up and down \Rightarrow **no net EDM effect**

Principle of EDM measurement at magnetic storage ring

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

 E^* field in the particle rest frame tilts spin due to EDM up and down \Rightarrow **no net EDM effect**

Use resonant "magic Wien-Filter" in ring $(\vec{E}_W + \vec{v} \times \vec{B}_W = 0)$: $E_W^* = 0 \rightarrow$ part. trajectory is not affected but $B_W^* \neq 0 \rightarrow$ mag. mom. is influenced \Rightarrow **net EDM effect can be observed!**

Wien filter

- field:
 2.7 · 10⁻²Tmm for
 1kW input power
- frequency range: 100 kHz-2MHz

Observation of polarization build-up

- radio-frequency Wien filter (WF) provides partially frozen spin
- polarization build-up proportional to EDM ... and many perturbations
- perturbations are under investigation

Precursor Experiment at COSY

Tools developed to manipulate and measure beam polarization:

- reaching > 1000 s spin coherence time
- measure 120 kHz spin tune precession in horizontal plane to 10^{-10} in 100 s
- development of polarization feed back system
- Single bunch spin manipulation
- RF Wien filter, BPMs, deflector, polarimeter, ...

Long Spin Coherence Time (SCT)

Long Spin Coherence time > 1000 s reached

Long Spin Coherence Time (SCT)

Long Spin Coherence time > 1000 s reached

Spin Tune ν_s

Spin tune
$$\nu_s = \frac{\Omega_{MDM}}{\Omega_{rev}} \approx \gamma G$$

 $\sigma(\nu_s = \gamma G) \approx 10^{-10} \text{ in } 100 \text{ s}$
 $\sigma(\nu_s = \gamma G) \approx 10^{-8} \text{ in } 2 \text{ s}$
[3]

Polarisation feedback

Controlling 120kHz precession

Pilot Bunch

Two bunches in storage ring, only one is manipulated by Wien filter

Axion Searches

Spin Motion in Storage Ring

Principle of storage ring axion experiment

Properties of Method

- AC measurement (i.e. systematics are under control)
- axion wind effect enhanced in storage rings ($v_{\text{particle}} \approx c$) $\vec{\Omega}_{\text{wind}} = -\frac{1}{S\hbar} \frac{C_N}{2f_a} (\hbar \partial_0 a(t)) \vec{\beta}$
- One can look for ALPs at a given mass given by Ω_{MDM} or scan a certain mass range by varying Ω_{MDM}

Expected Build-up

 $a(t) = a_0 \cos(\omega_a t + \varphi_a)$ axion phase φ_a not known! If your are unlucky, build-up is zero. 0.00025 0.0006 $--- \omega_a = \Omega_{MDM}$ $-\omega_a = \Omega_{MDM}$ $\varphi_a = 0$ $\omega_a = \Omega_{\rm MDM} (1 \pm 10^{-7})$ $\omega_a = \Omega_{\rm MDM} (1 - 10^{-7})$ $\varphi_a = \pi/2$ 0.0005 $\rightarrow \omega_a = \Omega_{MDM}(1 \pm 10^{-6})$ $\omega_a = \Omega_{MDM}(1 - 10^{-6})$ 0.00020 $\omega_a = \Omega_{\rm MDM} (1 \pm 10^{-5})$ $\leftarrow \omega_a = \Omega_{\text{MDM}} (1 - 10^{-5})$ 0 0004 0.00015 0.0003 ŝ ŝ 0.0002 0.00010 0.0001 0.00005 0.0000 0.00000 -0.0001 time t/s time t/s

Remedy: Inject 4 pulses with 90 degree polarisation phase difference. \rightarrow You cannot miss the signal.

Left-Right Asymmetry $A_{LR} \propto P_V$ Scan

Left-Right Asymmetry $A_{LR} \propto P_V$ Scan

Typical Asymmetry Measurement

Fit:
$$f(\Phi_m) = C_1 \cos(\Phi_m) + C_2 \sin(\Phi_m)$$

 $\hat{A} = \sqrt{C_1^2 + C_2^2}$

Results on Oscillating EDM d_{AC} , 90% CI

published in PRX: [8]

Axion Coupling to EDM operator $g_{ad\gamma}$ (Axion/Gluon Coupling))

- $g_{ad\gamma} = \frac{d_{AC}}{a_0}$ $a_0 = 0.55 \text{ GeV/cm}^3$ (Dark Matter is saturated by ALPs)
- assume no axion wind effect
- yellow lines (parallel to QCD axion lines): models with light QCD axion
- JEDI limit comparable or even better compared to other experiments
- Limits from SN1987A, Planck+BAO have strong model dependence

Axion Wind Effect: Coupling to Nucleons C_N/f_a

Axion Wind Effect: Coupling to Nucleons C_N/f_a 2023 PDG: f_{AC} [Hz] 2023 PDG:

Figure 90.3: Exclusion plot for ALP-neutron coupling as described in the text. Figure courtesy of Ciaran O'Hare [61], includes data from refs. [40, 42, 206, 245–255]. The hadronic axion model prediction is given in Eq. (90.11) with vanishing quark couplings, while the DFSZ model prediction depends on tan β as is found in Eq. (90.12), giving the shaded yellow region above. Note that for a fine-tuned value of tan β g_{an} can be taken to zero. On the other hand, the neutron star cooling constraints [254] also probe the axion-proton coupling g_{ap} at a comparable level (not shown), and both g_{an} and g_{ap} cannot simultaneously be taken to zero in the DFSZ model.

How to Explore a Wider Mass Range m_a

Up to now experiment was performed in a very narrow frequency range. How to access wider mass range?

 $\Omega_{\mathrm{MDM}} = \gamma \mathbf{G} \Omega_{\mathit{rev}}$

- modify beam energy (changes γ , Ω_{rev})
- 2 use different nuclei (changes G)
- Use additional electric field

$$\vec{\Omega}_{\text{MDM}} = -\frac{q}{m} \left[G\vec{B} - \left(G - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

allows to reduce $\vec{\Omega}_{\text{MDM}}$ down to 0

Estimate for one year (10⁷ seconds) running time [9] for COSY and a prototype storage ring for EDM measurements

Axion Searches at Storage Rings

Prototype Ring: Lattice & Bending Element

- operate electrostatic ring
- store $10^9 10^{10}$ particles for 1000 s
- $\bullet\,$ simultaneous $\circlearrowright\,$ and $\circlearrowright\,$ beams
- frozen spin (only possible with additional magnetic bending)
- develop and benchmark simulation tools
- develop key technologies: beam cooling, deflector, beam position monitors, shielding ...
- perform EDM measurement and axion/ALP search

[10]

Prototype Ring: Lattice & Bending Element

Pathfinder Facility for a new Class of **Pre**cision Physics **Sto**rage Rings (PRESTO) proposal to EU in preparation Partner: INFN, GSI/FZJ, CERN, MPG, RWTH, LIV, JAG, TSU

Summary

Summary

- Spin polarisation experiments in storage rings offer new possibilities to search for Electric Dipole Moments and axions/ALPs
- First results obtained at Cooler Synchrotron COSY at Forschungszentrum Jülich for deuterons on ALP searches and deuteron EDM
- Future: Dedicated storage ring needed

References I

- [1] Peter W. Graham and Surjeet Rajendran. "New Observables for Direct Detection of Axion Dark Matter". In: Phys. Rev. D88 (2013), p. 035023. DOI: 10.1103/PhysRevD.88.035023. arXiv: 1306.6088 [hep-ph]. URL: https://doi.org/10.1103/PhysRevD.88.035023.
- [2] G. Guidoboni et al. "How to Reach a Thousand-Second in-Plane Polarization Lifetime with 0.97-GeV/c Deuterons in a Storage Ring". In: *Phys. Rev. Lett.* 117.5 (2016), p. 054801. DOI: 10.1103/PhysRevLett.117.054801. URL: https://doi.org/10.1103/PhysRevLett.117.054801.
- D. Eversmann et al. "New method for a continuous determination of the spin tune in storage rings and implications for precision experiments". In: *Phys. Rev. Lett.* 115.9 (2015), p. 094801. DOI: 10.1103/PhysRevLett.115.094801. arXiv: 1504.00635
 [physics.acc-ph]. URL: https://doi.org/10.1103/PhysRevLett.115.094801.

References II

- [4] N. Hempelmann et al. "Phase locking the spin precession in a storage ring". In: Phys. Rev. Lett. 119.1 (2017), p. 014801. DOI: 10.1103/PhysRevLett.119.014801. arXiv: 1703.07561 [physics.acc-ph]. URL: https://doi.org/10.1103/PhysRevLett.119.014801.
- [5] Seung Pyo Chang et al. "Axionlike dark matter search using the storage ring EDM method". In: Phys. Rev. D 99 (8 Apr. 2019), p. 083002. DOI: 10.1103/PhysRevD.99.083002. URL: https://link.aps.org/doi/10.1103/PhysRevD.99.083002.
- [6] Nikolai N. Nikolaev. "Spin of protons in NICA and PTR storage rings as an axion antenna". In: *Pisma Zh. Eksp. Teor. Fiz.* 115.11 (2022), pp. 683–684. DOI: 10.1134/S0021364022600653. arXiv: 2204.13448 [hep-ph].

References III

- [7] Alexander J. Silenko. "Relativistic spin dynamics conditioned by dark matter axions". In: *Eur. Phys. J. C* 82.10 (2022), p. 856. DOI: 10.1140/epjc/s10052-022-10827-7. arXiv: 2109.05576 [hep-th].
- [8] S. Karanth et al. "First Search for Axionlike Particles in a Storage Ring Using a Polarized Deuteron Beam". In: *Phys. Rev. X* 13 (3 July 2023), p. 031004. DOI: 10.1103/PhysRevX.13.031004. URL: https://link.aps.org/doi/10.1103/PhysRevX.13.031004.
- Jörg Pretz et al. "Statistical sensitivity estimates for oscillating electric dipole moment measurements in storage rings". In: *Eur. Phys. J. C* 80.2 (2020), p. 107. DOI: 10.1140/epjc/s10052-020-7664-9. arXiv: 1908.09678 [hep-ex].
- [10] F. Abusaif et al. "Storage Ring to Search for Electric Dipole Moments of Charged Particles - Feasibility Study". In: (2019). arXiv: 1912.07881 [hep-ex].

References IV

[11] Dennis Eversmann et al. "Amplitude estimation of a sine function based on confidence intervals and Bayes' theorem". In: JINST 11.05 (2016), P05003.
 DOI: 10.1088/1748-0221/11/05/P05003. arXiv: 1512.08715 [physics.data-an].

Extra Slides

EDM: SUSY Limits

electron:

MSSM:
$$\varphi \approx 1 \Rightarrow d = 10^{-24} - 10^{-27} e \cdot cm$$

 $\varphi \approx \alpha / \pi \Rightarrow d = 10^{-26} - 10^{-30} e \cdot cm$

hadron:

MSSM:
$$d = 10^{-24} e \cdot \text{cm} \cdot \sin \phi_{CP} \frac{200 \text{GeV}}{M_{SUSY}}$$

SM EDM values

$$\mu_{n} = \frac{e}{2m_{p}} \approx 10^{-14} \text{ecm (CP \& P conserving)}$$

$$d_{n} = 10^{-14} \times \underbrace{10^{-7}}_{P-\text{violation}} \times \underbrace{10^{-3}}_{CP-\text{violation}} \times \underbrace{G_{F}F_{\pi}}_{\text{no flavor change}} = 10^{-31} \text{ecm}$$

$$d_{n} = \mathcal{O}(g_{w}^{4}g_{s}^{2}) = \mathcal{O}(G_{F}^{2}g_{s}^{2}) \quad (3loop)$$

$$d_{e} = \mathcal{O}(g_{w}^{4}g_{s}^{2}) = \mathcal{O}(G_{F}^{2}g_{s}^{2}) \quad (4loop)$$

Statistical Sensitivity

beam intensity	$N = 4 \cdot 10^{10}$ per fill
polarization	P = 0.8
spin coherence time	au= 1000 s
electric fields	E = 8 MV/m
polarimeter analyzing power	A = 0.6
polarimeter efficiency	f = 0.005

$$\sigma_{\text{stat}} \approx \frac{2\hbar}{\sqrt{Nf}\tau PAE} \Rightarrow \sigma_{\text{stat}}(1\text{year}) = 2.4 \cdot 10^{-29} \, e \cdot \text{cm}$$

challenge: get σ_{sys} to the same level

Systematic Sensitivity

signal:
$$\Omega_{\rm EDM} = \frac{dE}{s\hbar} = 2.4 \cdot 10^{-9} \, {\rm s}^{-1}$$
 for $d = 10^{-29} e \, {\rm cm}$

• radial *B*-field of
$$B_r = 10^{-17}$$
 T:
 $\Omega_{B_r} = \frac{eGB_r}{m} = 1.7 \cdot 10^{-9} \text{ s}^{-1}$

• geometric Phases (non-commutation of rotations), $B_{\text{long}}, B_{\text{vert}} \approx 1 \text{ nT}$

$$\Omega_{\rm GP} = \left(\frac{eGB}{16m}\right)^2 \, \frac{1}{f_{\rm rev}} = 3.7 \cdot 10^{-9} \, {\rm s}^{-7}$$

• General Relativity:

$$\Omega_{\rm GR} = -\frac{\gamma}{\gamma^2 + 1} \frac{\beta g}{c} = -4.4 \cdot 10^{-8} \mathrm{s}^{-1}$$

...

Systematic Sensitivity

Remedy:

 $\Omega_{GP} + \Omega_{GR}$ drops out in sum, $\Omega_{CW} + \Omega_{CCW}$, effect of B_r can be subtracted by observing displacement of the two beams.

Conclusion:

Statistically one can reach sensitivity of $\approx 10^{-29} e$ cm, many systematic effects can be controlled using \circlearrowleft and \circlearrowright beams, needs further investigation \rightarrow staged approach

Systematics

Systematics

Activities & Achievements at COSY

- required for first EDM measurement:
 - maximize spin coherence time (SCT)
 - precise measurement of spin precession (spin tune)
 - polarization feed back
 - RF- Wien filter (needed in magnetic storage ring to observe polarization build-up due to EDM)
- to reduce systematic errors:
 - development of high precision beam position monitors
 - beam based alignment
- Interpretation of results:
 - $\bullet\,$ theory (pEDM, dEDM, nEDM, $\ldots \rightarrow$ underlying theory)
 - spin tracking simulation (measured polarization \rightarrow EDM)
- Design of dedicated storage ring:
 - accelerator lattice
 - polarimeter development
 - development of (electro static) deflectors
- other observables:
 - axion searches, general relativity

Activities & Achievements at COSY

ent: (SCT) recession (spin tune)

netic storage ring to observe polarization

- to reduce systematic errors:
 - development of high precision beam position monitors
 - beam based alignment
- Interpretation of results:
 - $\bullet\,$ theory (pEDM, dEDM, nEDM, $\ldots \rightarrow$ underlying theory)
 - spin tracking simulation (measured polarization \rightarrow EDM)
- Design of dedicated storage ring:
 - accelerator lattice
 - polarimeter development
 - development of (electro static) deflectors
- other observables:
 - axion searches, general relativity
Activities & Achievements at COSY

ent: (SCT) recession (spin tune)

netic storage ring to observe polarization

73/74

- to reduce systematic errors:
 - development of high precision beam position monitors

Activities & Act

to reduce systematic errors:
development of high precision to

 \cdots ... \rightarrow underlying theory) red polarization \rightarrow EDM)

• axion searches, general relativity

Problem

Fit will always find an amplitude ($\hat{A} \ge 0$), now use $\hat{P} = \frac{\hat{A}}{\sigma}$, σ : uncertainty

$$f(\hat{P}|P) d\hat{P} = e^{-\frac{\hat{P}^2 + P^2}{2}} \hat{P} I_0(\hat{P}P) d\hat{P}$$
, Rice distribution

$\hat{P} = \hat{A} / \sigma \rightarrow \text{Confidence Interval}$

- procedure based on Feldman-Cousins methods [11]
- on horizontal axis read off the measured *P*
- vertical axis gives lower and upper limit for true *P*
- limit on *P* directly related to limit on *d_{AC}*