Electric Dipole Moments – probes of fundamental symmetries

J. Pretz RWTH Aachen/ FZ Jülich

Aachen, Juni 2013

Outline

Electric Dipole Moments (EDMs)

- What is it?
- Why is it interesting?
- What do we know about it?
- How to measure (charged particle) EDMs?

What is it?

Electric Dipoles

	atomic physics	hadron physics
charges	е	
$ \vec{r}_1 - \vec{r}_2 $	1 Å= 10 ⁻⁸ cm	
EDM		
naive expectation	10 ^{−8} <i>e</i> · cm	
observed	water molecule	
	2 · 10 ^{−8} <i>e</i> · cm	

	atomic physics	hadron physics
charges	е	е
$ \vec{r}_1 - \vec{r}_2 $	1 Å= 10 ⁻⁸ cm	$1 \mathrm{fm} = 10^{-13} \mathrm{cm}$
EDM		
naive expectation	10 ^{−8} <i>e</i> · cm	$10^{-13} e \cdot cm$
observed	water molecule	neutron
	2 · 10 ^{−8} <i>e</i> · cm	$< 3 \cdot 10^{-26} e$ · cm

neutron EDM of $d_n = 3 \cdot 10^{-26} e \cdot cm$ corresponds to separation of u- from d-quarks of $\approx 5 \cdot 10^{-26} cm$

JEDI

7/62

Operator $\vec{d} = q\vec{r}$

is odd under parity transformation $(\vec{r} \rightarrow -\vec{r})$:

 $\mathcal{P}^{-1}\vec{d}\mathcal{P}=-\vec{d}$

Consequences: In a state $|a\rangle$ of given parity the expectation value is 0:

$$\langle a | \vec{d} | a \rangle = - \langle a | \vec{d} | a \rangle$$

If $| a \rangle = \alpha | P = + \rangle + \beta | P = - \rangle$
in general $\langle a | \vec{d} | a \rangle \neq 0 \Rightarrow$ i.e. molecules

EDM of molecules

ground state: mixture of $\Psi_s = \frac{1}{\sqrt{2}} (\Psi_1 + \Psi_2)$ P = + $\Psi_a = \frac{1}{\sqrt{2}} (\Psi_1 - \Psi_2)$ P = -(Cohen-Tannoudji, B. Diu, F. Laloë, Mécanique quantique)

9/62

Molecules can have large EDM because of degenerated ground states with different parity

Molecules can have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite parity and cannot posess an EDM $P|had >= \pm 1|had >$

Molecules can have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite parity and cannot posess an EDM $P|had >= \pm 1|had >$

unless

 ${\cal P}$ and time reversal ${\cal T}$ invariance are violated!

${\mathcal T}$ and ${\mathcal P}$ violation of EDM

 $\Rightarrow \text{EDM measurement tests violation of fundamental symmetries } \mathcal{P} \text{ and } \mathcal{T}(\stackrel{\mathcal{CPT}}{=} \mathcal{CP})$

EDI

Symmetries in Standard Model

	electro-mag.	weak	strong
${\mathcal C}$	\checkmark	£	\checkmark
${\cal P}$	\checkmark	ź	\checkmark
$\mathcal{T} \stackrel{\textit{CPT}}{\rightarrow} \mathcal{CP}$	\checkmark	(ź)	(√)

- *C* and *P* are maximally violated in weak interactions (Lee, Yang, Wu)
- *CP* violation discoverd in kaon decays (Cronin,Fitch) described by CKM-matrix in Standard Model
- CP violation allowed in strong interaction but corresponding parameter $\theta_{QCD} \lesssim 10^{-10}$ (strong CP-problem)

Symmetries

- EDM requires violation of symmetries
- but particles may have large magnetic dipole moment (MDM),
- for **structureless** particles theory even predicts that $e^{\hbar} |\vec{S}|$

$$\mu = g \frac{e n}{2m} \frac{|\mathbf{S}|}{\hbar}$$
 with $g = 2$ in leading order

$$G = \frac{g-2}{2}$$
 for various particles:

	experiment	theory
electron	$1159652180.73(0.28)\cdot 10^{-12}$	$1159652181.13(0.86)\cdot 10^{-12}$
muon	$1165920.80(54)(33)\cdot 10^{-9}$	$1165918.28(49)\cdot 10^{-9}$
proton	1.792847356(23)	2*

*): static quark model, SU(6) wave function

JED:

Nucleon Spin Puzzle

EDI 2900 16/62

Why is it interesting?

\mathcal{CP} violation

- We are surounded by matter (and not anti–matter) $\eta = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} = \mathbf{6} \times \mathbf{10}^{-10}$
- In 1967 Sakharov formulated three prerequisites for baryogenesis. One of these is the combined violation of the charge and parity, CP, symmetry.
- Starting from equal amount of matter and anti-matter at the Big Bang, from \mathcal{CP} -violation in Standard Model we expect only 10^{-18}
- New CP violating sources outside the realm of the SM are clearly needed to explain this discrepancy of eight orders of magnitude.
- They could manifest in EDMs of elementary particles

History of Neutron EDM

21/62

no EDM observed yet, only limits

- no EDM observed yet, only limits
- no measurement for deuteron (or heavier nuclei),

JEDI

23/62

- no EDM observed yet, only limits
- no measurement for deuteron (or heavier nuclei),
- no direct measurement for proton

- no EDM observed yet, only limits
- no measurement for deuteron (or heavier nuclei),
- no direct measurement for proton
- Standard Model value essentially 0

- no EDM observed yet, only limits
- no measurement for deuteron (or heavier nuclei),
- no direct measurement for proton
- Standard Model value essentially 0
- Beyond SM values accessible by experiments

charged particle EDM measurements less precise

- charged particle EDM measurements less precise
- To measure EDMs one needs large electric fields. Charged particles are accelerated by electric fields

GOAL of JEDI (Jülich Electric Dipole Investigations)collaboration: Charged Hadron EDM measurements

- First measurement of deuteron, ³He EDM,
- first direct measurement of proton EDM

ultimately with a precision of $10^{-29}e$ cm

29/62

ヘロン ヘ通 と ヘヨン ヘヨン

How to measure charged particle EDMs?

Measurement of charged particle EDMs Generic Idea:

For **all** edm experiments (neutron, proton, atom, ...): Interaction of \vec{d} with electric field \vec{E} For charged particles: apply electric field in a storage ring:

Wait for build-up of vertical polarization $s_\perp \propto |d|$, then determine s_\perp using polarimeter

In general:

$$\frac{\mathrm{d}\vec{\boldsymbol{s}}}{\mathrm{d}t} = \vec{\Omega} \times \vec{\boldsymbol{s}}$$

Spin Motion is governed by Thomas-BMT equation (Bargmann, Michel, Telegdi)

$$rac{\mathrm{d}ec{s}}{\mathrm{d}t} = ec{\Omega} imes ec{s}$$

 $ec{\Omega} = rac{e\hbar}{mc} [Gec{B} + \left(G - rac{1}{\gamma^2 - 1}
ight) ec{v} imes ec{E} + rac{1}{2} \eta (ec{E} + ec{v} imes ec{B})]$

$$ec{d}=\etarac{e\hbar}{2mc}ec{S},\quadec{\mu}=2(G+1)rac{e\hbar}{2m}ec{S},\quad G=rac{g-2}{2},$$

- \vec{d} : electric dipole moment $\vec{\mu}$: magnetic moment, g:g-factor, G: anomalous magnetic moment
- γ : Lorentz factor

V. Bargmann, L. Michel and V. L. Telegdi, Phys. Rev. Lett. 2 (1959) 435.

$$ec{\Omega} = rac{e\hbar}{mc} [Gec{B} + \left(G - rac{1}{\gamma^2 - 1}
ight)ec{v} imes ec{E} + rac{1}{2}\eta(ec{E} + ec{v} imes ec{B})]$$

Several Options (try to get rid terms \propto G):

$$\vec{\Omega} = \frac{e\hbar}{mc} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E} + \frac{1}{2} \eta (\vec{E} + \vec{v} \times \vec{B})]$$

Several Options (try to get rid terms \propto G):

• Pure electric ring
with
$$\left(G - \frac{1}{\gamma^2 - 1}\right) = 0$$
, works only for $G > 0$

JEDI

35/62

<ロ> <回> <回> <回> < 回> < 回>

$$ec{\Omega} = rac{e\hbar}{mc} [Gec{B} + \left(G - rac{1}{\gamma^2 - 1}
ight)ec{v} imes ec{E} + rac{1}{2}\eta(ec{E} + ec{v} imes ec{B})]$$

Several Options (try to get rid terms \propto G):

JEDI

36/62

$$ec{\Omega} = rac{e\hbar}{mc} [Gec{B} + \left(G - rac{1}{\gamma^2 - 1}
ight) ec{v} imes ec{E} + rac{1}{2}\eta(ec{E} + ec{v} imes ec{B})]$$

Several Options (try to get rid terms \propto G):

Pure magnetic ring

Required field strength

	$G=rac{g-2}{2}$	<i>p</i> /GeV/c	<i>E_R/MV/m</i>	B_V/T
proton	1.79	0.701	10	0
deuteron	-0.14	1.0	-4	0.16
³ He	-4.18	1.285	17	-0.05

Ring radius \approx 40m Smaller ring size possible if $B_V \neq 0$ for proton $E = \frac{GBc\beta\gamma^2}{1 + G\beta^2\gamma^2}$

Figure 3: An all-electric storage ring lattice for measuring the electric dipole moment of the proton. Except for having longer straight sections and separated beam channels, the all-in-one lattice of Fig. 1 spatterned after this lattice. Quadrupole and sextupole families, and tunes and lattice functions of the allin-one lattice of Fig. 1 will be quite close to those given for this lattice in reference[3]. The match will be even closer with magnetic field set to zero for proton operation.

Brookhaven National Laboratory (BNL) Proposal

2. Combined \vec{E}/\vec{B} ring

Figure 1: "All-In-One" lattice for measuring EDM's of protons, deuterons, and helions.

JEDI

39/62

Under discussion at Forschungszentrum Jülich (design: R. Talman)

Main advantage:

Experiment can be performed at the existing (upgraded) COSY (COoler SYnchrotron) in Jülich on a shorter time scale!

COSY provides (polarized) protons and deuterons with $p = 0.3 - 3.7 \text{GeV}/c \Rightarrow$ Ideal starting point

$$ec{\Omega} = rac{e\hbar}{mc} \left(G ec{B} + rac{1}{2} \eta ec{v} imes ec{B}
ight)$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

$$\vec{\Omega} = \frac{e\hbar}{mc} \left(G\vec{B} + \frac{1}{2} \frac{\eta \vec{v} \times \vec{B}}{\eta \vec{v} \times \vec{B}} \right)$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

 E^* field in the particle rest frame tilts spin due to EDM up and down \Rightarrow **no net EDM effect**

$$ec{\Omega} = rac{e\hbar}{mc} \left(G ec{B} + rac{1}{2} \eta ec{v} imes ec{B}
ight)$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

 E^* field in the particle rest frame tilts spin due to EDM up and down \Rightarrow **no net EDM effect**

Use resonant "magic Wien-Filter" in ring $(\vec{E} + \vec{v} \times \vec{B} = 0)$:

 $E^* = 0 \rightarrow \text{part.}$ trajectory is not affected but

 $B^* \neq 0 \rightarrow$ mag. mom. is influenced

 \Rightarrow net EDM effect can be observed!

Horizontal spin motion $\propto G$

vertical spin motion $s_\perp \propto d$

Summary of different options

	\bigcirc	
1.) pure electric ring (BNL)	no \vec{B} field needed	works only for p
2.) combined ring (Jülich)	works for $p, d, {}^{3}\text{He}, \dots$	both <i>Ē</i> and <i>B</i> required
 pure magnetic ring (Jülich) 	existing (upgraded) COSY ring can be used , shorter time scale	lower sensitivity

Statistical Sensitivity

 $\sigma \approx \frac{\hbar}{\sqrt{NfT\tau_{p}}PEA}$

Ε	electric field	10 MV/m
Ρ	beam polarization	0.8
Α	analyzing power	0.6
Ν	nb. of stored particles/cycle	$4 imes 10^7$
f	detection efficiency	0.005
$ au_p$	spin coherence time	1000 s
Т	running time per year	10 ⁷ s

 $\Rightarrow \sigma \approx 10^{-29} e \cdot cm/year \text{ (for magnetic ring } \approx 10^{-24} e \cdot cm/year\text{)}$ Expected signal \approx 3nrad/s (for $d = 10^{-29} e \cdot cm$) (BNL proposal)

JEDI

46/62

Electrostatic Deflectors

- Electrostatic deflectors from Fermilab (\pm 125kV at 5 cm $\hat{=}$ 5MV/m)
- large-grain Nb at plate separation of a few cm yields \approx 20MV/m

Wien filter

Conventional design R. Gebel, S. Mey (FZ Jülich)

stripline design D. Hölscher, J. Slim (IHF RWTH Aachen)

Polarimeter

Principle: Particles hit a target: Left/Right asymmetry gives information on EDM Up/Down asymmetry gives information on MDM

Polarimeter

Cross Section & Analyzing Power for deuterons

Spin Coherence Time (SCT)

Short Spin Coherence Time

Spin Coherence Time (SCT)

Large Spin Coherence Time

Results on Spin Coherence Time (SCT)

Spins decohere during storage time results form Cosy run May 2012 using correction sextupole

 \Rightarrow SCT increase from a few s to \approx 200s already reached

(Ed. Stephenson)

• • • • • • • • • • • •

Systematics

One major source: Radial *B* field mimics an EDM effect:

- Difficulty: even small radial magnetic field, *B_r* can mimic EDM effect if :μ*B_r* ≈ *dE_r*
- Suppose $d = 10^{-29} e \cdot cm$ in a field of E = 10 MV/m

• This corresponds to a magnetic field:

$$B_r = \frac{dE_r}{\mu_N} = \frac{10^{-22} eV}{3.1 \cdot 10^{-8} eV/T} \approx 3 \cdot 10^{-17} T$$
(Earth Magnetic field $\approx 5 \cdot 10^{-5} T$)

Solution: Use two beams running clockwise and counter clockwise, separation of the two beams is sensitive to B_r

JEDI Collaboration

- JEDI = Jülich Electric Dipole Moment Investigations
- \approx 80 members

(Aachen, Dubna, Ferrara, Ithaca, Jülich, Krakow, Michigan, St. Petersburg, Minsk, Novosibirsk, Stockholm, Tbilisi, ...)

• \approx 10 PhD students

Storage Ring EDM Efforts

JARA FAME

JARA=Jülich Aachen Research Alliance New section founded: FAME (=Forces and Matter Experiments)

Summary

Summary

- EDM of charged particles can be measured in storage rings
- EDMs of elementary particles are of high interest to disentangle various sources of CP violation searched for to explain matter - antimatter asymmetry in the Universe

59/62

- Experimentally very challenging because effect is tiny
- Efforts at Brookhaven and Jülich to perform such measurements

Sources of \mathcal{CP} violation

Sources of \mathcal{CP} violation

 \Rightarrow It is mandatory to measure EDM of many different particles to disentangle various sources of CP violation.