Highlights of the JEDI collaboration

J. Pretz RWTH Aachen & FZ Jülich

JARA Annual Meeting, Aachen, Feb. 2015

JEDI Collaboration

JEDI = Jülich Electric Dipole Moment Investigations

pprox 100 members from 10 countries

Goal: Measurement of Electric Dipole Moments (EDM) of charged particles in storage rings.

Motivation: Electric Dipole Moment

Electric Dipole Moment (EDM):

- separation of positive and negative charge
- fundamental property of particles (like magnetic moment, mass, charge)
- existence of EDM for elementary particle is closely related to the dominance of matter over anti-matter in the universe

 $|\vec{d}|/e$ human hair diameter proton diameter earth

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Mass $m = 1.00727646681 \pm 0.00000000009 \mu$ Mass $m = 938.272046 \pm 0.000021$ MeV ^[a] $|m_p - m_{\overline{p}}|/m_p < 2 \times 10^{-9}, \text{ CL} = 90\% [b]$ $\left|\frac{q_{\overline{p}}}{m_{\pi}}\right|/(\frac{q_{p}}{m_{\pi}}) = 0.9999999991 \pm 0.0000000009$ $|q_p + q_{\overline{p}}|/e < 2 \times 10^{-9}$, CL = 90% ^[b] $|q_p + q_e|/e < 1 \times 10^{-21} [c]$ Magnetic moment $\mu = 2.792847356 \pm 0.000000023 \,\mu_N$ $(\mu_{D} + \mu_{\overline{D}}) / \mu_{D} = (-0.1 \pm 2.1) \times 10^{-3}$ Electric dipole moment $d < 0.54 \times 10^{-23} e \text{ cm}$ Electric polarizability $\alpha = (12.0 \pm 0.6) \times 10^{-4}$ fm³ Magnetic polarizability $\beta = (1.9 \pm 0.5) \times 10^{-4} \text{ fm}^3$ Charge radius = 0.877 ± 0.005 fm Magnetic radius = 0.777 ± 0.016 fm Mean life $\tau > 2.1 \times 10^{29}$ years, CL = 90% ^[d] ($p \rightarrow$ invisible mode) Mean life $\tau > 10^{31}$ to 10^{33} years ^[d] (mode dependent)

Matter-Antimatter asymmetry

Experimental Method: Generic Idea

For **all** EDM experiments (neutron, proton, atoms, ...): Interaction of \vec{d} with electric field \vec{E} For charged particles: apply electric field in a storage ring:

build-up of vertical polarization $s_{\perp} \propto |d|$

Test Measurements at COSY

unique storage ring for polarized protons and deuterons

⇒ ideal starting point for charged hadron EDMs

Recent achievements

- Spin coherence time: $\tau = 400 \text{ s}$
- Spin tune: $\overline{\nu_s} = -0.16097 \cdots \pm 10^{-10}$ in 100 s

Spin Coherence Time (SCT) Short Spin Coherence Time

cooled bunched beam \Rightarrow SCT= 20s

SCT similar to relaxation time in NMR (MRT)

Spin Coherence Time (SCT) Large Spin Coherence Time

using correction sextupole to correct for higher order effects leads to SCT of 400s.

SCT similar to relaxation time in NMR (MRT)

Spin Tune ν_s

deuterons: $p_d = 1$ GeV/c ($\gamma = 1.13$), G = -0.14256177(72)

 $\Rightarrow \nu_{s} = \gamma G \approx -0.161$

Result:

- spin tune changes by $\approx 10^{-9}$ during one cycle with a precision of $10^{-10}.$
- this indicates energy variation of this order
- very sensitive tool to study systematic error

Summary

