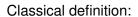
Electric Dipole Moments – probes of fundamental symmetries

J. Pretz RWTH Aachen/ FZ Jülich

Heidelberg, December 2013

Outline

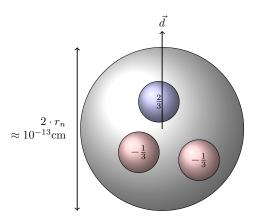
Electric Dipole Moments (EDMs)


- What is it?
- Why is it interesting?
- What do we know about it?
- How to measure (charged particle) EDMs?
 Results of first test measurements

What is it?

Electric Dipoles


$$\vec{d} = \sum_i q_i \vec{r}_i$$



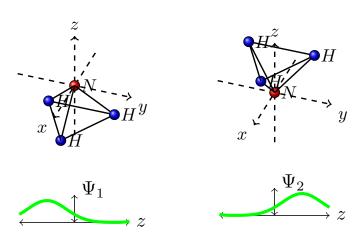
	atomic physics	hadron physics
charges	е	
$ \vec{r}_1 - \vec{r}_2 $	1 Å= 10 ⁻⁸ cm	
EDM		
naive expectation	10 ⁻⁸ <i>e</i> ⋅ cm	
observed	water molecule	
	2 · 10 ⁻⁸ <i>e</i> · cm	

	atomic physics	hadron physics
charges	е	e
$ \vec{r}_1 - \vec{r}_2 $	1 Å= 10 ⁻⁸ cm	$1 \text{fm} = 10^{-13} \text{cm}$
EDM		
naive expectation	10 ⁻⁸ <i>e</i> ⋅ cm	10 ⁻¹³ <i>e</i> ⋅ cm
observed	water molecule	neutron
	2 · 10 ⁻⁸ <i>e</i> · cm	$< 3 \cdot 10^{-26} e \cdot \mathrm{cm}$

neutron EDM of $d_n = 3 \cdot 10^{-26} e \cdot \text{cm}$ corresponds to separation of u- from d-quarks of $\approx 5 \cdot 10^{-26} \text{cm}$

Operator
$$\vec{d} = q\vec{r}$$

is odd under parity transformation ($\vec{r} \rightarrow -\vec{r}$):


$$\mathcal{P}^{-1}\vec{d}\mathcal{P} = -\vec{d}$$

Consequences:

In a state $|a\rangle$ of given parity the expectation value is 0:

$$\begin{split} \left\langle a|\vec{d}|a\right\rangle &= -\left\langle a|\vec{d}|a\right\rangle \\ \text{If } |a\rangle &= \alpha|P=+\rangle + \beta|P=-\rangle \\ \text{in general } \left\langle a|\vec{d}|a\right\rangle \neq 0 \Rightarrow \text{i.e. molecules} \end{split}$$

EDM of molecules

ground state: mixture of
$$\Psi_s=rac{1}{\sqrt{2}}\left(\Psi_1+\Psi_2\right)$$
 $P=+\Psi_a=rac{1}{\sqrt{2}}\left(\Psi_1-\Psi_2\right)$ $P=-$

 $\psi a = \frac{1}{\sqrt{2}} (\psi 1 - \psi 2) = 0$ (Cohen-Tannoudji, B. Diu, F. Laloë, Mécanique quantique)

Molecules can have large EDM because of degenerated ground states with different parity

Molecules can have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite parity and cannot possess an EDM

 $P|\text{had}>=\pm 1|\text{had}>$

Molecules can have large EDM because of degenerated ground states with different parity

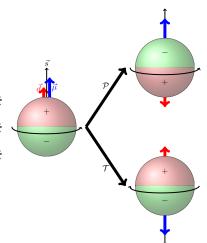
Elementary particles (including hadrons) have a definite parity and cannot possess an EDM

$$P|\text{had}>=\pm 1|\text{had}>$$

unless

 \mathcal{P} and time reversal \mathcal{T} invariance are violated!

\mathcal{T} and \mathcal{P} violation of EDM


 \vec{d} : EDM

 $\vec{\mu}$: magnetic moment both || to spin

$$H = -\mu \vec{\sigma} \cdot \vec{B} - d\vec{\sigma} \cdot \vec{E}$$

$$\mathcal{T}$$
: $H = -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{E}$

$$\mathcal{P}: H = -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{E}$$

 \Rightarrow EDM measurement tests violation of fundamental symmetries \mathcal{P} and $\mathcal{T}(\stackrel{\mathcal{CPT}}{=}\mathcal{CP})$

EDI

Symmetries in Standard Model

	electro-mag.	weak	strong
\mathcal{C}	✓	£	✓
${\cal P}$	✓	£	✓
$\mathcal{T} \stackrel{\mathit{CPT}}{\to} \mathcal{CP}$	✓	(£)	(√)

- $\mathcal C$ and $\mathcal P$ are maximally violated in weak interactions (Lee, Yang, Wu)
- CP violation discovered in kaon decays (Cronin,Fitch) described by CKM-matrix in Standard Model
- \mathcal{CP} violation allowed in strong interaction but corresponding parameter $\theta_{QCD} \lesssim 10^{-10}$ (strong \mathcal{CP} -problem)

Symmetries

- EDM requires violation of symmetries
- but particles may have large magnetic dipole moment (MDM),
- for structureless particles theory even predicts that

$$\mu=grac{e\hbar}{2m}rac{|ec{S}|}{\hbar}$$
 with $g=$ 2 in leading order

$$G = \frac{g-2}{2}$$
 for various particles: $\approx \frac{\alpha}{2\pi} \approx 0.00116$ for ℓ^{\pm}

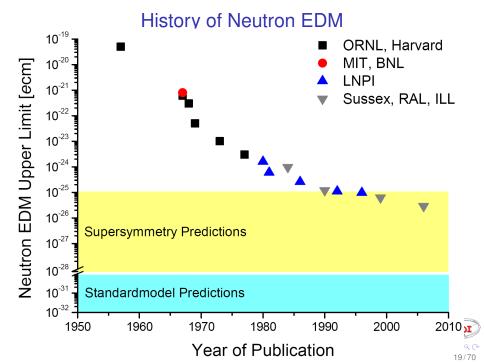
	experiment	theory
electron	$1159652180.73(0.28)\cdot 10^{-12}$	$1159652181.13(0.86)\cdot 10^{-12}$
muon	$1165920.80(54)(33)\cdot 10^{-9}$	1 165 918.28(49) · 10 ⁻⁹
proton	1.792847356(23)	2*

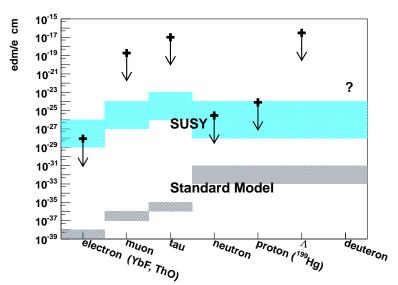
^{*):} static quark model, SU(6) wave function

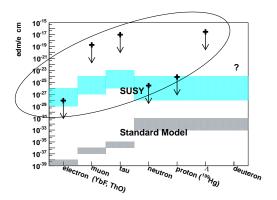
Why is it interesting?

\mathcal{CP} violation

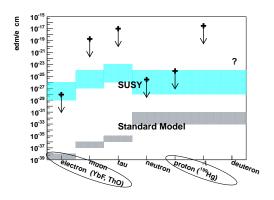
• We are surrounded by matter (and not anti–matter) $\eta = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} = \mathbf{6} \times \mathbf{10^{-10}}$


- Starting from equal amount of matter and anti-matter in the early universe, the CP-violation in the Standard Model predicts only 10⁻¹⁸
- In 1967 Sakharov formulated three prerequisites for baryogenesis. One of these is the combined violation of the charge and parity, CP, symmetry.
- New CP violating sources outside the realm of the SM are clearly needed to explain this discrepancy of eight orders of magnitude.
- They could manifest in EDMs of elementary particles

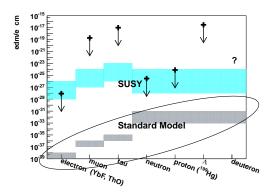




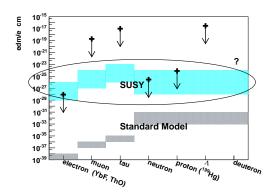




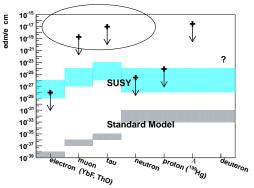
no EDM observed yet, only limits

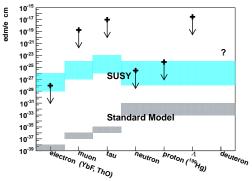

- no EDM observed yet, only limits
- no measurement for deuteron (or heavier nuclei),

- no EDM observed yet, only limits
- no measurement for deuteron (or heavier nuclei),
- no direct measurement for proton or electron

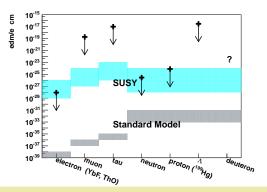


- no EDM observed yet, only limits
- no measurement for deuteron (or heavier nuclei),
- no direct measurement for proton or electron
- Standard Model value essentially 0





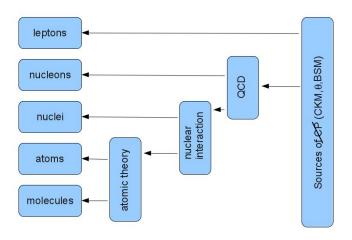
- no EDM observed yet, only limits
- no measurement for deuteron (or heavier nuclei),
- no direct measurement for proton or electron
- Standard Model value essentially 0
- Beyond SM values accessible by experiments.



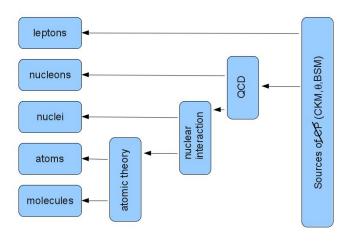
• direct charged particle EDM measurements less precise

- direct charged particle EDM measurements less precise
- To measure EDMs one needs large electric fields.
 Charged particles are accelerated by electric fields

GOAL of JEDI (Jülich Electric Dipole Investigations) collaboration:


Charged Hadron EDM measurements

- First measurement of deuteron, ³He EDM,
- first direct measurement of proton EDM ultimately with a precision of $10^{-29}e$ cm



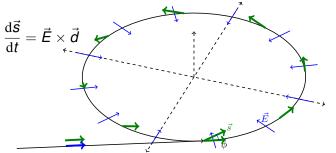
Sources of CP violation

Sources of CP violation

 \Rightarrow It is mandatory to measure EDM of many different particles to disentangle various sources of \mathcal{CP} violation.

Difficulty of charged particle EDM measurement

- EDM of neutral particles can be measured in small volumes (trap)
- applying an electric field on a charged particle accelerates the particles
 - ⇒ particle cannot be kept in small volume
 - \Rightarrow storage rings have to be operated to measure EDM of charged particles
- already done for muon (parallel to g-2 measurement) μ : $0.1 \pm 0.9 \cdot 10^{-19} e \cdot cm$


How to measure charged particle EDMs?

Measurement of charged particle EDMs Generic Idea:

For **all** edm experiments (neutron, proton, atom, ...): Interaction of \vec{d} with electric field \vec{E} For charged particles: apply electric field in a storage ring:

Wait for build-up of vertical polarization $s_{\perp} \propto |d|$, then determine s_{\perp} using polarimeter

In general:

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s}$$

Thomas-BMT equation

Spin Motion is governed by Thomas-BMT equation (Bargmann, Michel, Telegdi)

$$egin{aligned} rac{\mathrm{d} ec{s}}{\mathrm{d} t} &= ec{\Omega} imes ec{s} \ ec{\Omega} &= rac{e \hbar}{m c} [G ec{B} + \left(G - rac{1}{\gamma^2 - 1}
ight) ec{v} imes ec{E} + rac{1}{2} \eta (ec{E} + ec{v} imes ec{B})] \end{aligned}$$

$$\vec{d} = \eta \frac{e\hbar}{2mc} \vec{S}, \quad \vec{\mu} = 2(G+1) \frac{e\hbar}{2m} \vec{S}, \quad G = \frac{g-2}{2},$$

 \vec{d} : electric dipole moment

 $\vec{\mu}$: magnetic moment, g:g-factor , G: anomalous magnetic moment

 γ : Lorentz factor

Thomas-BMT equation

$$ec{\Omega} = rac{e\hbar}{mc}[Gec{B} + \left(G - rac{1}{\gamma^2 - 1}
ight)ec{v} imes ec{E} + rac{1}{2}\eta(ec{E} + ec{v} imes ec{B})]$$

Several Options (try to get rid terms \propto G):

Thomas-BMT equation

$$\vec{\Omega} = \frac{e\hbar}{mc} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} + \frac{1}{2}\eta(\vec{E} + \vec{v} \times \vec{B})]$$

Several Options (try to get rid terms \propto G):

Pure electric ring

with
$$\left(G - \frac{1}{\gamma^2 - 1}\right) = 0$$
 , works only for $G > 0$

Thomas-BMT equation

$$\vec{\Omega} = \frac{e\hbar}{mc} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} + \frac{1}{2}\eta(\vec{E} + \vec{v} \times \vec{B})]$$

Several Options (try to get rid terms \propto G):

- Pure electric ring with $\left(G \frac{1}{\gamma^2 1}\right) = 0$, works only for G > 0
- **2** Combined \vec{E}/\vec{B} ring $G\vec{B} + \left(G \frac{1}{\gamma^2 1}\right)\vec{v} \times \vec{E} = 0$

Thomas-BMT equation

$$ec{\Omega} = rac{e\hbar}{mc}[Gec{B} + \left(G - rac{1}{\gamma^2 - 1}
ight)ec{v} imes ec{E} + rac{1}{2}\eta(ec{E} + ec{v} imes ec{B})]$$

Several Options (try to get rid terms \propto G):

- ① Pure electric ring $\text{with } \left(G-\frac{1}{\gamma^2-1}\right)=0 \text{ , works only for } G>0$
- **2** Combined \vec{E}/\vec{B} ring $G\vec{B} + \left(G \frac{1}{\gamma^2 1}\right)\vec{v} \times \vec{E} = 0$
- Pure magnetic ring

Required field strength

	$G=rac{g-2}{2}$	p/GeV/c	E_R /MV/m	B_V/T
proton	1.79	0.701	10	0
deuteron	-0.14	1.0	-4	0.16
³ He	-4.18	1.285	17	-0.05

Ring radius \approx 40m Smaller ring size possible if $B_V \neq 0$ for proton $B_V = B_V + B_V +$

1. Pure Electric Ring

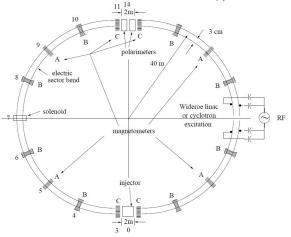


Figure 3: An all-electric storage ring lattice for measuring the electric dipole moment of the proton. Except for having longer straight sections and separated beam channels, the all-in-one lattice of Fig. 1 is patterned after this lattice. Quadrupole and sextupole families, and tunes and lattice functions of the alin-one lattice of Fig. 1 will be quite close to those given for this lattice in reference[3]. The match will be even closer with magnetic field set to zero for proton operation.

2. Combined \vec{E}/\vec{B} ring

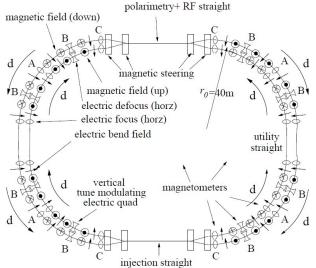


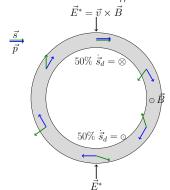
Figure 1: "All-In-One" lattice for measuring EDM's of protons, deuterons, and helions.

3. Pure Magnetic Ring

Main advantage:

Experiment can be performed at the existing (upgraded) COSY (COoler SYnchrotron) in Jülich on a shorter time scale!

COSY provides (polarized) protons and deuterons with $p = 0.3 - 3.7 \text{GeV/}c \Rightarrow \text{Ideal starting point}$



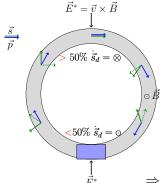
3. Pure Magnetic Ring

$$ec{\Omega} = rac{e\hbar}{mc} \left(G ec{B} + rac{1}{2} rac{\eta ec{v} imes ec{B}
ight)$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

E* field in the particle rest frame tilts spin due to EDM up and down ⇒ no net EDM effect



3. Pure Magnetic Ring

$$ec{\Omega} = rac{e\hbar}{mc} \left(G ec{B} + rac{1}{2} rac{\eta}{ec{v}} imes ec{B}
ight)$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

E* field in the particle rest frame tilts spin due to EDM up and down ⇒ no net EDM effect

Use resonant "magic Wien-Filter" in ring $(\vec{E} + \vec{v} \times \vec{B} = 0)$: $E^* = 0 \rightarrow \text{part.}$ trajectory is not affected but $B^* \neq 0 \rightarrow \text{mag.}$ mom. is influenced

⇒ net EDM effect can be observed!

Horizontal spin motion $\propto G$

vertical spin motion $s_{\perp} \propto extit{d}$

Summary of different options

	\odot	(3)
1.) pure electric ring (BNL)	no \vec{B} field needed	works only for p
2.) combined ring (Jülich)	works for $p, d, {}^{3}He, \dots$	both \vec{E} and \vec{B} required
3.) pure magnetic ring (Jülich)	existing (upgraded) COSY ring can be used, shorter time scale	lower sensitivity

Statistical Sensitivity (pure electric or combined ring)

$$\sigma pprox rac{\hbar}{\sqrt{\textit{NfT} au_{\textit{p}}}\textit{PEA}}$$

E	electric field	10 MV/m
Р	beam polarization	0.8
Α	analyzing power	0.6
Ν	nb. of stored particles/cycle	4×10^{10}
f	detection efficiency	0.005
$ au_{ extsf{p}}$	spin coherence time	1000 s
Т	running time per year	10 ⁷ s

 $\Rightarrow \sigma \approx 10^{-29} e \cdot \text{cm/year}$ Expected signal \approx 3nrad/s (for $d=10^{-29} e \cdot \text{cm}$) (BNL proposal)

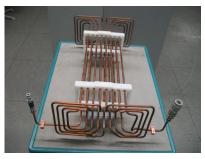
Statistical Sensitivity pure magnetic ring (COSY)

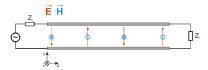
$$\sigma pprox rac{\hbar}{2} rac{G\gamma^2}{G+1} rac{U}{E \cdot L} rac{1}{\sqrt{NfT\tau_p}PA}$$

G	anomalous magnetic moment	
γ	relativistic factor	1.13
	p = 1 GeV/c	
U	circumference of COSY	180 m
$E \cdot L$	integrated electric field	$0.1\cdot 10^6~\textrm{V}$
Ν	nb. of stored particles/cycle	$2 \cdot 10^9$

 $\Rightarrow \sigma \approx 10^{-25} e \cdot \text{cm/year}$

Electrostatic Deflectors




- Electrostatic deflectors from Fermilab ($\pm 125 kV$ at 5 cm = 5 MV/m)
- \bullet large-grain Nb at plate separation of a few cm yields \approx 20MV/m

Wien filter

Conventional design R. Gebel, S. Mey (FZ Jülich)

stripline design D. Hölscher, J. Slim (IHF RWTH Aachen)

Systematics

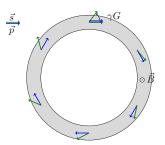
One major source:

Radial B field mimics an EDM effect:

- Difficulty: even small radial magnetic field, B_r can mimic EDM effect if : $\mu B_r \approx dE_r$
- Suppose $d = 10^{-29} e \cdot \text{cm}$ in a field of E = 10 MV/m
- This corresponds to a magnetic field:

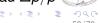
$$B_r = rac{dE_r}{\mu_N} = rac{10^{-22} eV}{3.1 \cdot 10^{-8} eV/T} pprox 3 \cdot 10^{-17} T$$
 (Earth Magnetic field $pprox 5 \cdot 10^{-5} T$)

Solution: Use two beams running clockwise and counter clockwise, separation of the two beams is sensitive to B_r


First test measurements: Spin Coherence Time (SCT), spin tune

Spin tune & Spin Coherence Time

Spin tune: $\nu=\gamma {\it G}$, number of spin revolution with respect to the momentum vector per particle turn

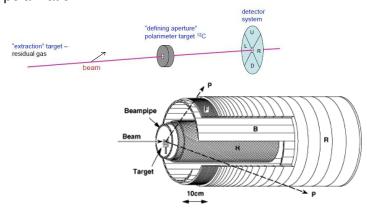


For
$$p_d = 1 \text{ GeV/}c$$
 ($\gamma = 1.13$), $G = -0.14256177(72)$)

$$\Rightarrow \nu = \gamma G = -0.161$$

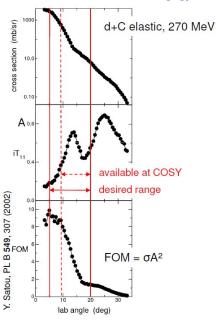
 ν can be determined by measuring the horizontal polarization of beam. If spins do not decohere.

Problem: spin tune depends on $\gamma \Rightarrow$ momentum spread $\Delta p/p$ leads to decoherence.



JEDI

Polarimeter


Principle: Particles hit a target:

Left/Right asymmetry gives information on vertical polarization Up/Down asymmetry gives information on horizontal polarization

Polarimeter

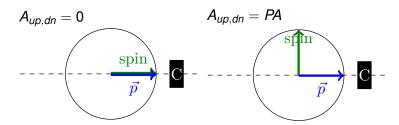
Cross Section & Analyzing Power for deuterons

$$N^{up,dn} \propto (1 \pm P A \sin(\gamma G f_{rev} t))$$

$$A_{up,dn} = rac{N^{up} - N^{dn}}{N^{up} + N^{dn}}$$

= $PA \sin(\gamma G f_{rev} t)$

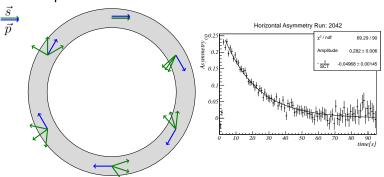
A: analyzing powerP: beam polarization



Asymmetry Measurements

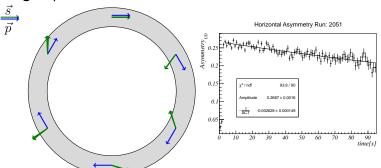
• Detector signal $N^{up,dn} \propto (1 \pm PA \sin(\gamma G f_{rev} t))$

$$A_{up,dn} = \frac{N^{up} - N^{dn}}{N^{up} + N^{dn}} = P A \sin(\gamma G f_{rev} t)$$


A: analyzing power, P: polarization

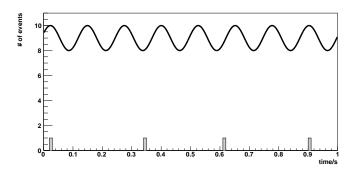
Spin Coherence Time (SCT)

Short Spin Coherence Time


cooled bunched beam \Rightarrow SCT= 20s

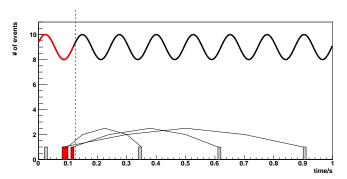
Spin Coherence Time (SCT)

Large Spin Coherence Time

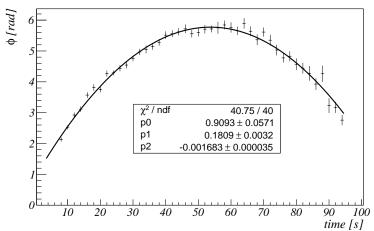

using correction sextupole to correct for higher order effects leads to SCT of 400s

Spin Tune ν

- Problem: detector rate ≈ 5 kHz, f_{rev} = 781kHz
 ⇒ only 1 hit every 25th period
- not possible to use usual χ^2 -fit
- use unbinned Maximum Likelihood (under investigation)

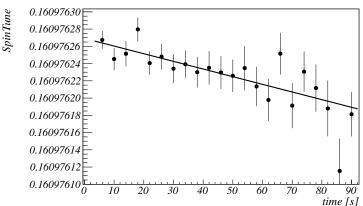


Spin Tune ν


- map all events in first period ($T=1/(\nu f_{rev})\approx 8\mu s$) and perform χ^2 -fit (requires knowledge of νf_{rev})
- Do fit for fixed frequency νf_{rev} and retain phase
- ullet Analysis is done in macroscopic time bins of pprox 2s

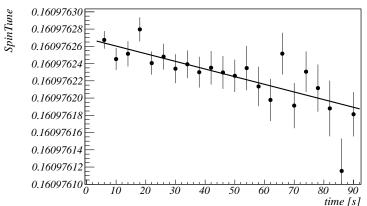
Phase Measurements

Phase [Run: 2328 Cycle: 3]


1st derivative gives deviation from assumed spin tune

Spin tune measurements

Spintune [Run: 2328 Cycle: 3]

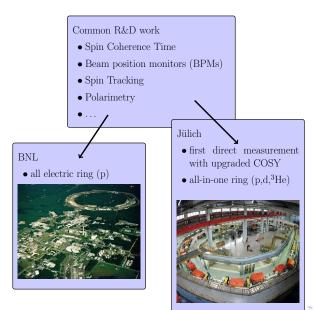

- Spin tune γG can be determined to $\approx 10^{-8}$ in a 2 second measurement
- Average Spin tune in cycle ($\approx 100 \, \text{s}$) known to 10^{-10}

Spin tune measurements

Spintune [Run: 2328 Cycle: 3]

- Spin tune γG can be determined to $\approx 10^{-8}$ in a 2 second measurement
- Average Spin tune in cycle ($\approx 100\,\mathrm{s}$) known to 10^{-10} We started to do precision physics!

Summary & Outlook

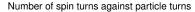


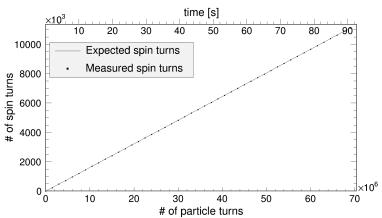
JEDI Collaboration

- JEDI = Jülich Electric Dipole Moment Investigations
- ≈ 100 members
 (Aachen, Dubna, Ferrara, Ithaca, Jülich, Krakow, Michigan,
 St. Petersburg, Minsk, Novosibirsk, Stockholm, Tbilisi, ...)
- ≈ 10 PhD students

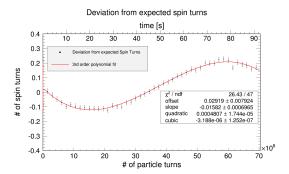
Storage Ring EDM Efforts

Summary


- EDM of charged particles can be measured in storage rings
- EDMs of elementary particles are of high interest to disentangle various sources of CP violation searched for to explain matter - antimatter asymmetry in the Universe
- Experimentally very challenging because effect is tiny
- Efforts in Jülich and in the US to perform such measurements
- First measurements on spin coherence time in spin tune


Spare

Spin tune measurements



Slope equals $\nu = \gamma G$

69/70

Spin tune measurements

- We are sensitive to spin tune changes of the order of 10^{-9} in a single cycle (≈ 100 s)
- reason for varying spin tune is still under investigation
- powerful to keep spin aligned with momentum vector (vital for frozen spin method)

