Electric Dipole Moment Measurements at Storage Rings

> J. Pretz RWTH Aachen & FZ Jülich

> > Ferrara, May 2015

Outline

Seminar

- Introduction: Electric Dipole Moments (EDMs): What is it?
 Why is it interesting?
 What do we know about EDMs?
- Experimental Method: How to measure charged particle EDMs?

• Results of first test measurements: Spin Coherence time and Spin tune

Lecture

Polarization Measurement

What is it?

Electric Dipoles

	atomic physics	hadron physics
charges	е	
$ \vec{r}_1 - \vec{r}_2 $	1 Å= 10 ⁻⁸ cm	
EDM		
naive expectation	10 ^{−8} <i>e</i> · cm	
observed	water molecule	
	2 · 10 ^{−8} <i>e</i> · cm	

	atomic physics	hadron physics
charges	е	е
$ \vec{r}_1 - \vec{r}_2 $	1 Å= 10 ⁻⁸ cm	$1 \mathrm{fm} = 10^{-13} \mathrm{cm}$
EDM		
naive expectation	10 ^{−8} <i>e</i> · cm	$10^{-13} e \cdot cm$
observed	water molecule	neutron
	2 · 10 ^{−8} <i>e</i> · cm	$< 3 \cdot 10^{-26} e$ · cm

neutron EDM of $d_n = 3 \cdot 10^{-26} e$ cm corresponds to separation of u- from d-quarks of $\approx 5 \cdot 10^{-26}$ cm

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Mass $m = 1.0086649160 \pm 0.0000000004$ u Mass $m = 939.565379 \pm 0.000021$ MeV ^[a] $(m_n - m_{\overline{n}}) / m_n = (9 \pm 6) \times 10^{-5}$ $m_n - m_p = 1.2933322 \pm 0.0000004 \text{ MeV}$ = 0.00138844919(45) uMean life $\tau = 880.3 \pm 1.1 \text{ s}$ (S = 1.9) $c\tau = 2.6391 \times 10^8 \text{ km}$ Magnetic moment $\mu = -1.9130427 \pm 0.0000005 \,\mu_N$ Electric dipole moment $d < 0.29 \times 10^{-25} e \text{ cm}$. CL = 90% Mean-square charge radius $\langle r_n^2 \rangle = -0.1161 \pm 0.0022$ fm^2 (S = 1.3) Magnetic radius $\sqrt{\langle r_M^2 \rangle} = 0.862^{+0.009}_{-0.008}$ fm Electric polarizability $\alpha = (11.6 \pm 1.5) \times 10^{-4} \text{ fm}^3$ Magnetic polarizability $\beta = (3.7 \pm 2.0) \times 10^{-4} \text{ fm}^3$ Charge $q = (-0.2 \pm 0.8) \times 10^{-21} e$ Mean $n\pi$ -oscillation time > 8.6 × 10⁷ s, CL = 90% (free n) Mean $n\overline{n}$ -oscillation time > 1.3×10^8 s, CL = 90% ^[f] (bound n) Mean nn'-oscillation time > 414 s. CL = 90% [g]

Operator $\vec{d} = q\vec{r}$

is odd under parity transformation $(\vec{r} \rightarrow -\vec{r})$:

 $\mathcal{P}^{-1}\vec{d}\mathcal{P}=-\vec{d}$

Consequences: In a state $|a\rangle$ of given parity the expectation value is 0:

$$\langle a | \vec{d} | a \rangle = - \langle a | \vec{d} | a \rangle$$

but if $| a \rangle = \alpha | P = + \rangle + \beta | P = - \rangle$
in general $\langle a | \vec{d} | a \rangle \neq 0 \Rightarrow$ i.e. molecules

EDM of molecules

ground state: mixture of $\Psi_s = \frac{1}{\sqrt{2}} (\Psi_1 + \Psi_2), P = +$ $\Psi_a = \frac{1}{\sqrt{2}} (\Psi_1 - \Psi_2), P = -$

Molecules can have large EDM because of degenerated ground states with different parity

Molecules can have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite parity and cannot posses an EDM $P|had >= \pm 1|had >$

Molecules can have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite parity and cannot posses an EDM $P|had >= \pm 1|had >$

unless

 \mathcal{P} and time reversal \mathcal{T} invariance are violated!

${\mathcal T}$ and ${\mathcal P}$ violation of EDM

 $\Rightarrow \text{EDM measurement tests violation of fundamental symmetries } \mathcal{P} \text{ and } \mathcal{T}(\stackrel{\mathcal{CPT}}{=} \mathcal{CP})$

Symmetries in Standard Model

	electro-mag.	weak	strong
${\mathcal C}$	\checkmark	£	\checkmark
${\cal P}$	\checkmark	£	(√)
$\mathcal{T} \stackrel{\textit{CPT}}{\rightarrow} \mathcal{CP}$	\checkmark	(ź)	(√)

- *C* and *P* are maximally violated in weak interactions (Lee, Yang, Wu)
- *CP* violation discovered in kaon decays (Cronin,Fitch) described by CKM-matrix in Standard Model
- CP violation allowed in strong interaction but corresponding parameter $\theta_{QCD} \lesssim 10^{-10}$ (strong CP-problem)

Sources of $\mathcal{CP}-Violation$

Standard Model		
Weak interaction		
CKM matrix	ightarrow unobservably small EDMs	
Strong interaction		
θ_{QCD}	\rightarrow best limit from neutron EDM	
beyond Standard Model		
e.g. SUSY	\rightarrow accessible by EDM measurements	

Why is it interesting?

Matter-Antimatter Asymmetry

Excess of matter in the universe:

	observed	SM prediction
$\eta = \frac{n_B - n_{\bar{B}}}{n_{\gamma}}$	$6 imes 10^{-10}$	10 ⁻¹⁸

Sakharov (1967): \mathcal{CP} violation needed for baryogenesis

 \Rightarrow New \mathcal{CP} violating sources beyond SM needed to explain this discrepancy

They could manifest in EDMs of elementary particles

What do we know about EDMs?

20/99

EDM: Current Upper Limits

EDM: Current Upper Limits

FZ Jülich: EDMs of **charged** hadrons: *p*, *d*, ³He

Why Charged Particle EDMs?

- no direct measurements for charged hadrons exist
- potentially higher sensitivity (compared to neutrons):
 - longer life time,
 - more stored protons/deuterons
- complementary to neutron EDM:

 $d_d \stackrel{?}{=} d_p + d_n \Rightarrow \text{access to } \theta_{QCD}$

• EDM of one particle alone not sufficient to identify *CP*-violating source

Sources of \mathcal{CP} Violation

J. de Vries

How to measure charged particle EDMs?

Experimental Method: Generic Idea

For **all** EDM experiments (neutron, proton, atoms, ...): Interaction of \vec{d} with electric field \vec{E} For charged particles: apply electric field in a storage ring:

build-up of vertical polarization $s_{\perp} \propto |d|$

Experimental Requirements

- high precision storage ring

 (alignment, stability, field homogeneity)
- high intensity beams ($N = 4 \cdot 10^{10}$ per fill)
- polarized hadron beams (P = 0.8)
- large electric fields (E = 10 MV/m)
- long spin coherence time ($\tau = 1000 \text{ s}$),
- polarimetry (analyzing power A = 0.6, acc. f = 0.005)

$$\sigma_{\text{stat}} \approx \frac{1}{\sqrt{Nt}\tau PAE} \Rightarrow \sigma_{\text{stat}}(1\text{year}) = 10^{-29} \, e \cdot \text{cm}$$

challenge: get σ_{sys} to the same level

Systematics

Major source: Radial *B* field mimics an EDM effect:

- Difficulty: even small radial magnetic field, *B_r* can mimic EDM effect if :μ*B_r* ≈ *dE_r*
- Suppose $d = 10^{-29} e cm$ in a field of $E_r = 10 MV/m$

• This corresponds to a magnetic field:

$$B_r = rac{dE_r}{\mu_N} = rac{10^{-22} eV}{3.1 \cdot 10^{-8} eV/T} pprox 3 \cdot 10^{-17} T$$

Solution: Use two beams running clockwise and counter clockwise, separation of the two beams is sensitive to B_r

Systematics

Sensitivity needed: $1.25 \text{ fT}/\sqrt{\text{Hz}}$ for $d = 10^{-29} e \text{ cm}$ (possible with SQUID technology)

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E} + \frac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

Ω: angular precession frequency *d*: electric dipole moment *G*: anomalous magnetic moment γ: Lorentz factor

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{\sqrt{2}-1}\right)\vec{v} \times \vec{E} + \frac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

Ω: angular precession frequency *d*: electric dipole moment *G*: anomalous magnetic moment γ: Lorentz factor

dedicated ring: pure electric field, freeze horizontal spin motion $\left(G - \frac{1}{\gamma^2 - 1}\right) = 0$

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{2^{2}-1}\right)\vec{v} \times \vec{E} + \frac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

 Ω : angular precession frequency **d**: electric dipole moment

G: anomalous magnetic moment γ : Lorentz factor

COSY: pure magnetic ring access to EDM via motional electric field $\vec{v} \times \vec{B}$, requires additional radio-frequency *E* and *B* fields to suppress $G\vec{B}$ contribution

Pure Magnetic Ring

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} \left(G\vec{B} + \frac{m}{es} d\vec{v} \times \vec{B} \right) \times \vec{s}$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

 E^* field in the particle rest frame tilts spin due to EDM up and down \Rightarrow **no net EDM effect**

Pure Magnetic Ring

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} \left(G\vec{B} + \frac{m}{es} d\vec{v} \times \vec{B} \right) \times \vec{s}$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

 E^* field in the particle rest frame tilts spin due to EDM up and down \Rightarrow **no net EDM effect**

Use resonant "magic Wien-Filter" in ring $(\vec{E}_W + \vec{v} \times \vec{B}_W = 0)$:

 $E_W^* = 0 \rightarrow \text{part.}$ trajectory is not affected but

 $B^*_W \neq 0 \rightarrow$ mag. mom. is influenced

 \Rightarrow net EDM effect can be observed!

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{\mathrm{e}}{m} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} + \frac{m}{\mathrm{e}s} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

Ω: angular precession frequency d: electric dipole momentG: anomalous magnetic moment γ: Lorentz factor

COSY: pure magnetic ring access to EDM via motional electric field $\vec{v} \times \vec{B}$, requires additional radio-frequency *E* and *B* fields to suppress $G\vec{B}$ contribution

> neglecting EDM term spin tune: $\nu_{s} \approx \frac{|\vec{\Omega}|}{|\omega_{\text{cyc}}|} = \gamma G$, $(\vec{\omega}_{cyc} = \frac{e}{\gamma m} \vec{B})$

Results of first test measurements
Cooler Synchrotron COSY

COSY provides (polarized) protons and deuterons with p = 0.3 - 3.7 GeV/c \Rightarrow Ideal starting point for charged particle EDM searches

R & D at COSY

- maximize spin coherence time (SCT)
- precise measurement of spin precession (spin tune)
- rf- Wien filter design and construction
- tests of electro static deflectors (goal: field strength > 10 MV/m)
- development of high precision beam position monitors
- polarimeter development
- spin tracking simulation tools

Experimental Setup

• Inject and accelerate vertically polarized deuterons to $p \approx 1 \text{ GeV}/c$

Experimental Setup

- Inject and accelerate vertically polarized deuterons to $p \approx 1 \text{ GeV}/c$
- flip spin with help of solenoid into horizontal plane

Experimental Setup

- Inject and accelerate vertically polarized deuterons to $p \approx 1 \text{ GeV}/c$
- flip spin with help of solenoid into horizontal plane
- Extract beam slowly (in 100 s) on target
- Measure asymmetry and determine spin precession

Asymmetry Measurements

• Detector signal
$$N^{up,dn} \propto (1 \pm PA \sin(\gamma Gf_{rev}t))$$

 $A_{up,dn} = \frac{N^{up} - N^{dn}}{N^{up} + N^{dn}} = PA \sin(\gamma Gf_{rev}t) = PA \sin(\nu_s n_{turn})$

A: analyzing power, P : polarization

Polarimetry

Cross Section & Analyzing Power for deuterons

 $N_{up,dn} \propto (1 \pm PA \sin(\nu_s f_{rev} t))$

$$A_{up,dn} = rac{N^{up} - N^{dn}}{N^{up} + N^{dn}} = PA \sin(
u_s t_{rev} t) = PA \sin(
u_s n_{turn})$$

A : analyzing power P : beam polarization

Polarimeter

elastic deuteron-carbon scattering Up/Down asymmetry \propto horizontal polarization $\rightarrow \nu_s = \gamma G$ Left/Right asymmetry \propto vertical polarization $\rightarrow d$

 $N_{up,dn} \propto 1 \pm PA \sin(\nu_s n_{turn}), \quad f_{rev} \approx 750 \, \mathrm{kHz}$

Results: Spin Coherence Time (SCT)

unbunched beam $\Delta p/p = 10^{-5} \Rightarrow \Delta \gamma/\gamma = 2 \cdot 10^{-6}, T_{rev} \approx 10^{-6} \text{ s}$ \Rightarrow decoherence after < 1 s cooled bunched beam eliminates 1st order effects in $\Delta p/p$ \Rightarrow SCT $\tau = 20 \text{ s}$

Results: Spin Coherence Time (SCT)

using correction sextupole to correct for higher order effects leads to SCT of τ =400 s

deuterons: $p_d = 1$ GeV/c ($\gamma = 1.13$), G = -0.14256177(72)

$$\Rightarrow \nu_{s} = \gamma G \approx -0.161$$

Spin Tune ν_s measurement

- Problem: detector rate ≈ 5 kHz, f_{rev} = 750kHz ⇒ only 1 hit every 25th period
- not possible to use usual χ^2 -fit
- use unbinned Maximum Likelihood (under investigation)

Spin Tune ν_s measurement

- map all events into first period (*T* = 1/(ν_sf_{rev}) ≈ 8µs) and perform χ²-fit (requires knowledge of ν_sf_{rev})
- Analysis is done in macroscopic time bins of 10⁶ turns (≈ 1.3 s)

Asymmetry in 1st period

Scan of ν_s

- allows for $\sigma_{\nu_s} \approx 10^{-6}$
- now fix ν_s at maximum and look at phase vs. turn number phase is determined for turn intervals of 10⁶ turns

Phase Measurements

1st derivative gives deviation from assumed spin tune

Phase Measurements

1st derivative gives deviation from assumed spin tune

$$\nu_{s}(n) = \nu_{s}^{0} + \frac{1}{2\pi} \frac{\mathrm{d}\tilde{\varphi}}{\mathrm{d}n}$$

Results: Spin Tune ν_s

Results: Spin Tune ν_s

Results: Spin Tune ν_s

Spin Tune Measurement

- precision of spin tune measurement 10⁻¹⁰ in one cycle
- spin rotation due to electric dipole moment: $\nu_s = \frac{vm\gamma d}{es} = 5 \cdot 10^{-11}$ for $d = 10^{-24} e$ cm (in addition rotations due to *G* and imperfections)
- Compare to muon g 2: $\sigma_{\nu_s} \approx 3 \cdot 10^{-8}$ per year main difference: measurement duration 600μ s compared to 100 s
- spin tune measurement can now be used as tool to investigate systematic errors

Spin Tune as tool to investigate systematics

JEDI Collaboration

- JEDI = Jülich Electric Dipole Moment Investigations
- \approx 100 members

(Aachen, Daejeon, Dubna, Ferrara, Grenoble, Indiana, Ithaca, Jülich, Krakow, Michigan, Minsk, Novosibirsk, St. Petersburg, Stockholm, Tbilisi, ...)

• \approx 10 PhD students

Storage Ring EDM Efforts

Summary & Outlook

- EDMs of elementary particles are of high interest to disentangle various sources of CP violation searched for to explain matter - antimatter asymmetry in the Universe
- EDM of charged particles can be measured in storage rings
- Experimentally very challenging because effect is tiny
- First promising results from test measurements at COSY: spin coherence time: few hundred seconds spin tune precision: 10⁻¹⁰ in one cycle

Polarization Measurement

From events to cross section

 $N(\vartheta, \phi) = a(\vartheta, \phi) \quad \mathcal{L} \quad \sigma(\vartheta, \phi)$ number of observed events acceptance/efficiency Iuminosity $\mathcal{L} =$ beam flux $n \times t$ arget density $\rho \times$ target length ℓ cross section arget

If beam is polarized

$$P = rac{n^{\uparrow} - n^{\downarrow}}{n^{\uparrow} + n^{\downarrow}} = rac{3-2}{3+2} = 0.2.$$

Number of particles scattered to the left ($\phi = 0^{\circ}$):

$$N_L = a_L \rho \ell (n^{\uparrow} \sigma_{\uparrow,L} + n^{\downarrow} \sigma_{\downarrow,L})$$

Goal: Determine *P*, (with small error), knowing N_L , N_R , $\frac{\sigma_{\uparrow,L}}{\sigma_{\uparrow,R}}$

Polarization P, Analyzing Power A

$$N_{L} = a_{L} \rho \ell (n^{\uparrow} \sigma_{\uparrow,L} + n^{\downarrow} \sigma_{\downarrow,L})$$

$$\stackrel{\Phi-\text{sym}}{=} a_{L} \rho \ell (n^{\uparrow} \sigma_{\uparrow,L} + n^{\downarrow} \sigma_{\uparrow,R})$$

$$N_{R} = a_{R} \rho \ell (n^{\uparrow} \sigma_{\uparrow,R} + n^{\downarrow} \sigma_{\downarrow,R})$$

$$\stackrel{\Phi-\text{sym}}{=} a_{R} \rho \ell (n^{\uparrow} \sigma_{\uparrow,R} + n^{\downarrow} \sigma_{\uparrow,L})$$

 $n^{\uparrow}(n^{\downarrow})$: nb. of beam particles with spin up (down) $P = \frac{n^{\uparrow} - n^{\downarrow}}{n^{\uparrow} + n^{\downarrow}}$: Polarization $\sigma_{\uparrow,R} \equiv \sigma_{\downarrow,L} =: \sigma_R$: cross section for scattering process to the right (left) if spin is up (down) $\sigma_{\downarrow,R} \equiv \sigma_{\uparrow,L} =: \sigma_L$:

$$\sigma_{\downarrow,R} \equiv \sigma_{\uparrow,L} =: \sigma_L:$$

 $A = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}:$ analyzing power

Polarization P, Analyzing Power A

With the definitions

$$A = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$
 and $P = \frac{n^{\uparrow} - n^{\downarrow}}{n^{\uparrow} + n^{\downarrow}}$

one can write

$$N_{R} = a_{R} \rho \ell \sigma (1 + AP)$$

$$N_{L} = a_{L} \rho \ell \sigma (1 - AP)$$

with $\sigma = \frac{1}{2} (\sigma_{R} + \sigma_{L})$

To simplify, assume $a_L = a_R$

Now, define asymmetry ϵ :

Asymmetry ϵ

$$\epsilon = \frac{N_R - N_L}{N_R + N_L} = \frac{(1 + PA) - (1 - PA)}{(1 + PA) + (1 - PA)} = PA \quad \Rightarrow \hat{P} = \frac{\epsilon}{A}$$

$$\hat{P}$$
 : estimator for *P*.
Statistical error $\sigma_{\epsilon} = 1/\sqrt{N}$, $N = N_{R} + N_{L}$ for small asymmetries ($N_{L} \approx N_{R}$)

$$\Rightarrow \sigma_P = \frac{1}{A\sqrt{N}}$$
, Figure of merit (FOM) = $\frac{1}{\sigma_P^2} = A^2 N$

Analysis

Now take into account ϑ dependence

 $\epsilon(\vartheta) = P\!A(\vartheta)$

How to extract *P*, knowing $A(\vartheta)$ and measuring $\epsilon(\vartheta)$?

Straight forward way: Use

$$N = \rho \ell \int_{acc} a(\vartheta, \Phi) n\sigma(\vartheta, \Phi) d\Omega$$

$$\Rightarrow \langle N_{R/L} \rangle \propto (1 \pm \langle A \rangle P), \quad \langle A \rangle = \frac{\int_{acc} a\sigma A d\Omega}{\int_{acc} a\sigma d\Omega} \approx \frac{\sum_{i} A(\vartheta_{i})}{N}$$
and

$$\hat{P} = \frac{1}{\langle A \rangle} \frac{N_R - N_L}{N_R + N_L}, \quad \text{FOM}_{cnt} \stackrel{\epsilon \leq 1}{=} N \langle A \rangle^2$$

(Academic) Example

 $A(\vartheta) = \vartheta - \overline{\vartheta}, \quad \sigma = \text{const.}$ unpolarized cross section and acceptance in region $\vartheta_{min} = 0.1$ to $\vartheta_{max} = 0.3$. $\overline{\vartheta} = (\vartheta_{max} - \vartheta_{min})/2$ $A(\vartheta)$ 0.1 0.05 0 -0.05 -0.10.12 0.14 0.16 0.18 0.2 0.22 0.24 0. 0.26 0.28 0.3

$$\langle A \rangle = 0 \Rightarrow \text{FOM} = N \langle A \rangle^2 = 0 \quad \Rightarrow \sigma_P = \infty$$
Can one do better?

Analyse in bins of ϑ

In this bin FOM is $FOM_i = n_i \langle A_i \rangle^2 \approx n_i A_i^2$, $n_i = N/N_{bin}$, N_{bin} :nb. of bins

Note, *P* does not depend on ϑ .

Analysis in bins

Combine all bins:

$$\hat{P} = \frac{\sum_{i} \frac{\hat{P}_{i}}{\sigma_{P_{i}}^{2}}}{\sum_{i} \frac{1}{\sigma_{P_{i}}^{2}}} = \frac{\sum_{i} \hat{P}_{i} \text{FOM}_{i}}{\sum_{i} \text{FOM}_{i}} = \frac{\sum_{i} \hat{P}_{i} n_{i} A_{i}^{2}}{\sum_{i} n_{i} A_{i}^{2}}$$

$$\mathsf{FOM} = \sum_{i} \mathsf{FOM}_{i} = \sum_{i} n_{i} A_{i}^{2} = N \frac{\sum_{i} n_{i} A^{2}}{\sum_{i} n_{i}} \overset{N_{bin} \to \infty}{=} N \langle A^{2} \rangle$$

many bins		one bin
$N\langle A^2 angle$	\geq	$N\langle A angle^2$

Binning

With binning FOM can be improved. Binning is sometimes inconvenient

- Too few bins \Rightarrow FOM not maximal
- Too many bins \Rightarrow Empty bins

Is there an alternative?

Event weighting

General case:

Consider the following estimator for P:

$$\hat{P} = \frac{\sum_{R} w_{i} - \sum_{L} w_{i}}{\sum_{R} w_{i} A_{i} - \sum_{L} w_{i} A_{i}}$$

where $w_i = w(\vartheta_i)$ as an (arbitrary) weight factor Easy to show: $\langle \hat{P} \rangle = P$ independet of *w* In words: What ever you choose for *w*, you always get the correct result, **but** with different uncertainties.

$$FOM_{w} = N \frac{\langle wA \rangle^{2}}{\langle w^{2} \rangle}$$

Reminder: $\langle wA \rangle = \frac{\sum w_{i}A_{i}}{N} = \frac{\int a\sigma wAd\Omega}{\int a\sigma d\Omega}$

Examples

Two special cases: $\frac{w = 1}{\hat{P}} = \frac{\sum_{R} 1 - \sum_{L} 1}{\sum_{R} A_{i} + \sum_{L} A_{i}} = \frac{1}{\langle A \rangle} \frac{N_{R} - N_{L}}{N_{R} + N_{L}}$

 \rightarrow like counting rate asymmetry in one bin

w = A

$$\hat{P} = \frac{\sum_{R} A_{i} - \sum_{L} A_{i}}{\sum_{R} A_{i}^{2} + \sum_{L} A_{i}^{2}} = \frac{\sum_{j} A_{j}(n_{j,R} - n_{j,L})}{\sum_{j} A_{j}^{2}(n_{j,R} + n_{j,L})}$$
$$= \frac{\sum_{j} A_{j} n_{j} \epsilon_{j}}{\sum_{j} A_{j}^{2} n_{j}} = \frac{\sum_{j} A_{j}^{2} n_{j} \hat{P}_{j}}{\sum_{j} A_{j}^{2} n_{j}}$$

 \rightarrow same as infinite number of bins

Best weight

One can show, that among all weight factors, the choice w = A gives the largest FOM.

		counting, $w = 1$	Binning, $w = A$, MLH
	FOM	$N\langle A angle^2$	$N\langle A^2 angle$
Gain in	FOM:	$\frac{\langle A^2 \rangle}{\langle A \rangle^2}$	
An ovo	nt with	an largo analyzing	nowar A talls you more a

An event with an large analyzing power A tells you more about P than an event with lower A. It should thus enter the analysis with more weight.

(Academic) Example

Example: Eleastic deuteron carbon scattering at T = 270 MeV

Example

Connection to Maximum Likelihood Method

$$N_R \propto a(1 + AP), N_L = \propto a(1 - AP)$$

Log-likelihood function

$$\ell = \sum_{R} \ln (a_i(1 + A_i P)) - \langle N_R \rangle (P)$$

+
$$\sum_{L} \ln (a_i(1 - A_i P)) - \langle N_L \rangle (P).$$

Connection to Maximum Likelihood Method

MLH estimator for *P*: Maximize
$$\ell \Rightarrow \frac{\partial \ell}{\partial P} \stackrel{!}{=} 0$$

$$\Rightarrow \frac{\partial \ell}{\partial P} = \sum_{R} \frac{A_i}{1 + A_i P} + \sum_{L} \frac{A_i}{1 - A_i P} = 0$$

for $AP \ll 1$:
$$\Rightarrow \sum_{R} A_i (1 - A_i P) + \sum_{L} A_i (1 + A_i P) = 0$$

$$\Rightarrow \hat{P} = \frac{\sum_{R} A_{i} - \sum_{L} A_{i}}{\sum_{R} A_{i}^{2} + \sum_{L} A_{i}^{2}}$$

Estimator of maximum likelihood function coincides with estimator for optimal weight!

Summary

- Polarizations can be extracted from event rates, knowing the analyzing power *A*
- weighting the events with their analyzing power A give the largest FOM
- Gain with respect to just counting events is

$$\frac{\mathsf{FOM}_{w=A}}{\mathsf{FOM}_{cnt}} = \frac{\langle A^2 \rangle}{\langle A \rangle^2}$$

Details:

JP, "Comparison of methods to extract an asymmetry parameter from data," Nucl. Instrum. Meth. A **659** (2011) 456 <u>arXiv:1104.1038</u>

Spin Tune as tool to investigate systematics

- Create artificial imperfections with solenoids/steerers
- measure spin tune change Δν_s
- expectation $\Delta \nu_s \propto (y_{\pm} - a_{\pm})^2$ a_{\pm} : kicks due to imperfections, y_{\pm} : kicks due to solenoids

Spin Tune jumps

parabolic behavior expected from simulations
 y[±] = (\frac{\chi_1 \pm \chi_2}{2}, \chi_{1,2}) : solenoid strength for perfect machine, minimum should be at y⁺ = 0

parabolic behavior expected from simulations
 y[±] = (\frac{\chi_1 \pm \chi_2}{2}, \chi_{1,2}) : solenoid strength for perfect machine, minimum should be at y⁺ = 0

Electron and Neutron EDM

J. M. Pendlebury & E.A. Hinds, NIMA 440(2000) 471

EDM: SUSY Limits

electron: MSSM: $\varphi \approx 1 \Rightarrow d = 10^{-24} - 10^{-27} e \cdot cm$ $\varphi \approx \alpha/\pi \Rightarrow d = 10^{-26} - 10^{-30} e \cdot cm$

neutron: MSSM: $d = 10^{-24} e \cdot \text{cm} \cdot \sin \phi_{CP} \frac{200 \text{GeV}}{M_{SUSY}}$

Electrostatic Deflectors

- Electrostatic deflectors from Fermilab (\pm 125kV at 5 cm $\hat{=}$ 5MV/m)
- large-grain Nb at plate separation of a few cm yields \approx 20MV/m

Wien Filter

Conventional design R. Gebel, S. Mey (FZ Jülich)

stripline design D. Hölscher, J. Slim (IHF RWTH Aachen)

2. Pure Electric Ring

Figure 3: An all-electric storage ring lattice for measuring the electric dipole moment of the proton. Except for having longer straight sections and separated beam channels, the all-in-one lattice of Fig. 1 is patterned after this lattice. Quadrupole and sextupole families, and tunes and lattice functions of the allin-one lattice of Fig. 1 will be quite close to those given for this lattice in reference[3]. The match will be even closer with magnetic field set to zero for proton operation.

Brookhaven National Laboratory (BNL) Proposal

3. Combined \vec{E}/\vec{B} ring

Figure 1: "All-In-One" lattice for measuring EDM's of protons, deuterons, and helions.

Under discussion at Forschungszentrum Jülich (design: R. Talman)

Summary of different options

	\odot	\odot
1.) pure magnetic ring (Jülich)	existing (upgraded) COSY ring can be used , shorter time scale	lower sensitivity
2.) pure electric ring (BNL)	no \vec{B} field needed	works only for p
3.) combined ring (Jülich)	works for $p, d, {}^{3}\text{He}, \dots$	both <i>Ē</i> and <i>B</i> required

EDM Activities Around the World

K. Kirch

Systematics

• Splitting of beams:
$$\delta y = \pm \frac{\beta c R_0 B_r}{E_r Q_y^2} = \pm 1 \cdot 10^{-12} \text{ m}$$

- $Q_y \approx 0.1$: vertical tune
- Modulate $Q_y = Q_y^0 (1 m\cos(\omega_m t)), \ m \approx 0.1$
- Splitting causes *B* field of $\approx 0.4 \cdot 10^{-3}$ fT
- in one year: 10⁴ fills of 1000 s ⇒ σ_B = 0.4 · 10⁻¹ fT per fill needed
- Need sensitivity $1.25 \, \text{fT} / \sqrt{\text{Hz}}$

Systematics

