Towards a Storage Ring Electric Dipole Moment Measurement

J. Pretz RWTH Aachen & FZ Jülich on behalf of the JEDI & CPEDM collaboration

Aachen, DPG meeting, March 2019

Outline

Introduction & Motivation

What are EDMs?, What do we know about EDMs?, Why are EDMs interesting?

Experimental Methods

How to measure charged particle EDMs?

• Strategy towards a storage ring EDM measurement

Introduction & Motivation

Electric Dipole Moments (EDM)

- permanent separation of positive and negative charge
- fundamental property of particles (like magnetic moment, mass, charge)
- existence of EDM only possible via violation of time reversal T CPT CP and parity P symmetry
- close connection to "matter-antimatter" asymmetry
- axion field leads to oscillating EDM

$\mathcal{CP}-\text{Violation}$ & connection to EDMs

Standard Model			
Weak interaction			
CKM matrix	ightarrow unobservably small EDMs		
Strong interaction			
θ_{QCD}	\rightarrow best limit from neutron EDM		
beyond Standard Model			
e.g. SUSY	\rightarrow accessible by EDM measurements		

EDM in SM and SUSY

EDM in SM and SUSY

EDM in SM and SUSY

EDM: Current Upper Limits

storage rings: EDMs of **charged** hadrons: $p, d, {}^{3}$ He

Experimental Method

Experimental Method: Generic Idea

For **all** EDM experiments (neutron, proton, atoms, ...): Interaction of \vec{d} with electric field \vec{E}

For charged particles: apply electric field in a storage ring:

build-up of vertical polarization $s_{\perp} \propto d$, if $\vec{s}_{horz} ||\vec{p}$ (frozen spin)

Experimental Method: Generic Idea

For **all** EDM experiments (neutron, proton, atoms, ...): Interaction of \vec{d} with electric field \vec{E}

For charged particles: apply electric field in a storage ring:

build-up of vertical polarization $s_{\perp} \propto d$, if $\vec{s}_{horz} ||\vec{p}$ (frozen spin)

Spin Precession: Thomas-BMT Equation

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$$

$$= \vec{\Omega}_{MDM} = \vec{\Omega}_{EDM}$$
electric dipole moment (EDM): $\vec{d} = \eta \frac{q\hbar}{2mc} \vec{s}$,
magnetic dipole moment (MDM): $\vec{\mu} = 2(G+1) \frac{q\hbar}{2m} \vec{s}$

Note: $\eta = 2 \cdot 10^{-15}$ for $d = 10^{-29} e$ cm, $G \approx 1.79$ for protons

Spin Precession: Thomas-BMT Equation

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$$
$$\vec{\Omega}_{\text{MDM}} = 0, \quad \text{frozen spin}$$

achievable with pure electric field if $G = \frac{1}{\gamma^2 - 1}$, works only for G > 0, e.g. proton or with special combination of *E*, *B* fields and γ , i.e. momentum

Momentum and ring radius for proton in frozen spin condition

Momentum and ring radius for proton in frozen spin condition

Different Options

	\bigcirc	\odot
1.) pure electric ring	no \vec{B} field needed,	works only for particles
	♂, ♂ beams simultaneously	with <i>G</i> > 0 (e.g. <i>p</i>)
2.) combined ring	works for $p, d, {}^{3}He$,	both \vec{E} and \vec{B}
	smaller ring radius	B field reversal for \circlearrowleft , \circlearrowright
		required
3.) pure magnetic ring	existing (upgraded) COSY	lower sensitivity,
	ring can be used,	precession due to G,
	shorter time scale	i.e. no frozen spin

Statistical Sensitivity

beam intensity	$N = 4 \cdot 10^{10}$ per fill
polarization	P = 0.8
spin coherence time	au= 1000 s
electric fields	E = 8 MV/m
polarimeter analyzing power	A = 0.6
polarimeter efficiency	f = 0.005

$$\sigma_{\text{stat}} \approx \frac{2\hbar}{\sqrt{Nf}\tau PAE} \Rightarrow \sigma_{\text{stat}}(1\text{year}) = 2.4 \cdot 10^{-29} \, e \cdot \text{cm}$$

challenge: get σ_{sys} to the same level

Systematic Sensitivity

observable:
$$\Omega_{\rm EDM} = \frac{dE}{s\hbar} = 2.4 \cdot 10^{-9} \, {\rm s}^{-1}$$
 for $d = 10^{-29} e \, {\rm cm}$

• radial *B*-field of
$$B_r = 10^{-17}$$
 T:
 $\Omega_{B_r} = \frac{eGB_r}{m} = 1.7 \cdot 10^{-9} \text{ s}^{-1}$
• geometric Phases (non-commutation of rotations), $B_{\text{long}}, B_{\text{vert}} \approx 1$ nT
 $\Omega_{\text{GP}} = \left(\frac{eGB}{16m}\right)^2 \frac{1}{f_{\text{rev}}} \approx 3.7 \cdot 10^{-9} \text{ s}^{-1}$
• ...

Remedy:

$$\begin{split} & \circlearrowright: \quad \Omega_{\rm CW} \quad = \quad \Omega_{\rm EDM} + \Omega_{\rm GP} + \Omega_{B_r} \,, \\ & \circlearrowright: \quad \Omega_{\rm CCW} \quad = \quad \Omega_{\rm EDM} - \Omega_{\rm GP} + \Omega_{B_r} \,. \end{split}$$

 Ω_{GP} drops out in sum, $\Omega_{CW} + \Omega_{CCW}$, effect of B_r can be subtracted by observing displacement of the two beams.

Systematics

Systematics

Systematics

Gravity:

$$\Omega_{\mathrm{grav}} = rac{2\gamma+1}{\gamma+1} \, rac{eta ega}{c} = \mathbf{3} \cdot \mathbf{10^{-8} \, s^{-1}}$$

 $g = 9.81 \text{m/s}^2$ second effect: vertival electric (E_V) and radial magnetic (B_r) field needed to counteract force due to gravity $\left(F_{\text{grav}} = \frac{2\gamma^2 - 1}{\gamma}mg\right)$

Conclusion:

Statistically one can reach sensitivity of $\approx 10^{-29} e$ cm, many systematic effects can be controlled using \bigcirc and \bigcirc beams, needs further investigation \rightarrow staged approach

Towards a storage ring EDM measurement

precursor experiment at COSY (FZ Jülich)

Stage 1

Staged approach Stage 2

prototype ring

cw

Stage 3

dedicated storage ring

24/36

Stage 1: Precursor Experiment

- Ongoing at COSY/ Forschungszentrum Jülich
- Achievements:
 - Long Spin Coherence time $> 1000 \text{ s}\sqrt{}$

- measurement and manipulation and polarisation vector \checkmark
- $\bullet\,$ First deuteron EDM measurement underway \rightarrow V. Shmakova

Step 2: Prototype Ring

- operate electrostatic ring
- store $10^9 10^{10}$ particles for 1000 s
- $\bullet\,$ simultaneous $\circlearrowright\,$ and $\circlearrowright\,$ beams
- frozen spin (only possible with additional magnetic bending)
- develop and benchmark simulation tools
- develop key technologies: beam cooling, deflector, beam position monitors, shielding ...
- perform EDM measurement

Ring Lattice & Bending Element

Ring Lattice & Bending Element

Step 3: Dedicated Ring

• pure electric ring:

frozen spin ($p = 701 \text{ MeV}/c E_{kin}=233 \text{ MeV}$):

Summary

- EDMs are unique probe to search for new CP-violating interactions (and contribute to axion searches)
- charged particle EDMs can be measured in storage rings
- staged approach:

precursor at COSY \rightarrow prototype (100 m) \rightarrow dedicated ring (500 m)

Document submitted to ESPP in Dec. 2018 (arXiv:1812.08535, CERN yellow report CERN-PBC-REPORT-2019-002 in preparation)

European Research Council

Spare

${\mathcal T}$ and ${\mathcal P}$ violation of EDM

<mark>ḋ</mark>: EDM

 $\vec{\mu}$: magnetic moment (MDM) both || to spin \vec{s}

 \Rightarrow EDM measurement tests violation of fundamental symmetries \mathcal{P} and $\mathcal{T}(\stackrel{\mathcal{CPT}}{=} \mathcal{CP})$

EDM activities around the world

Axion Searches

S. P. Chang, S. Haciomeroglu, O. Kim, S. Lee, S. Park and Y. K. Semertzidis, PoS PSTP **2017** (2018) 036 [arXiv:1710.05271 [hep-ex]].

Momentum and ring radius for deuteron in frozen spin condition

Why Charged Particle EDMs?

J. de Vries