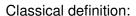
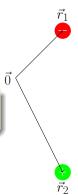
Electric Dipole Moment Measurements at Storage Rings

J. PretzRWTH Aachen & FZ Jülich for the JEDI collaboration


DPG Tagung Frankfurt, März 2014

Outline


- Introduction: Electric Dipole Moments (EDMs): What is it?
- Motivation: Why is it interesting?
- Experimental Method: How to measure charged particle EDMs?
- Results of first test measurements:
 Spin tune and Spin Coherence time

What is it?

Electric Dipoles

$$\vec{d} = \sum_i q_i \vec{r}_i$$

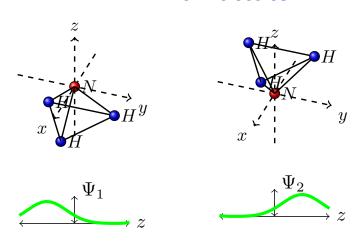
	atomic physics	hadron physics
charges	е	
$ \vec{r}_1 - \vec{r}_2 $	1 Å= 10 ⁻⁸ cm	
EDM		
naive expectation	10 ^{−8} <i>e</i> · cm	
observed	water molecule	
	2 · 10 ⁻⁸ <i>e</i> · cm	

	atomic physics	hadron physics
charges	е	е
$ \vec{r}_1 - \vec{r}_2 $	1 Å= 10 ⁻⁸ cm	$1 \text{fm} = 10^{-13} \text{cm}$
EDM		
naive expectation	10 ⁻⁸ <i>e</i> ⋅ cm	10 ⁻¹³ <i>e</i> ⋅ cm
observed	water molecule	neutron
	$2 \cdot 10^{-8} e \cdot \text{cm}$	$< 3 \cdot 10^{-26} \ensuremath{e} \cdot \ensuremath{cm}$

neutron EDM of $d_n = 3 \cdot 10^{-26} e \cdot \text{cm}$ corresponds to separation of u- from d-quarks of $\approx 5 \cdot 10^{-26} \text{cm}$

Operator $\vec{d} = q\vec{r}$

is odd under parity transformation ($\vec{r} \rightarrow -\vec{r}$):


$$\mathcal{P}^{-1}\vec{d}\mathcal{P} = -\vec{d}$$

Consequences:

In a state $|a\rangle$ of given parity the expectation value is 0:

$$\left\langle a|\vec{d}|a\right\rangle = -\left\langle a|\vec{d}|a\right\rangle$$

but if $|a\rangle = \alpha|P=+\rangle + \beta|P=-\rangle$
in general $\left\langle a|\vec{d}|a\right\rangle \neq 0 \Rightarrow$ i.e. molecules

EDM of molecules

(Cohen-Tannoudji, B. Diu, F. Laloë, Mécanique quantique)

Molecules can have large EDM because of degenerated ground states with different parity

Molecules can have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite parity and cannot posses an EDM

 $P|\text{had}>=\pm 1|\text{had}>$

Molecules can have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite parity and cannot posses an EDM

$$P|\text{had}>=\pm 1|\text{had}>$$

unless

 \mathcal{P} and time reversal \mathcal{T} invariance are violated!

\mathcal{T} and \mathcal{P} violation of EDM

 \vec{d} : EDM

 $\vec{\mu}$: magnetic moment

both || to spin
$$H = -\mu \vec{\sigma} \cdot \vec{B} - d\vec{\sigma} \cdot \vec{E}$$

$$T: H = -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{E}$$

$$P: H = -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{E}$$

⇒ EDM measurement tests violation of fundamental symmetries \mathcal{P} and $\mathcal{T}(\stackrel{\mathcal{CPT}}{=}\mathcal{CP})$

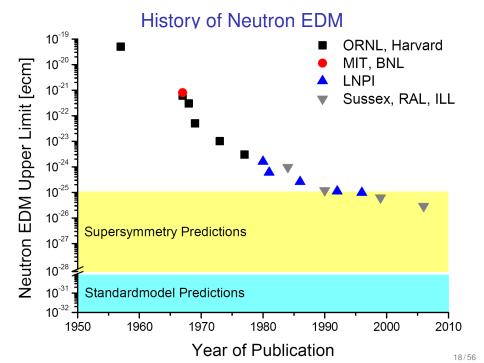
Why is it interesting?

Motivation: Sources of CP-Violation

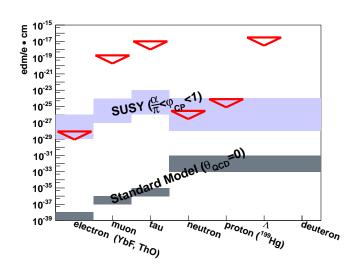
Standard Model			
Weak interaction			
CKM matrix	ightarrow unobservably small EDMs		
Strong interaction			
θ_{QCD}	ightarrow best limit from neutron EDM		
beyond Standard Model			
e.g. SUSY	ightarrow accessible by EDM measurements		

CP violation

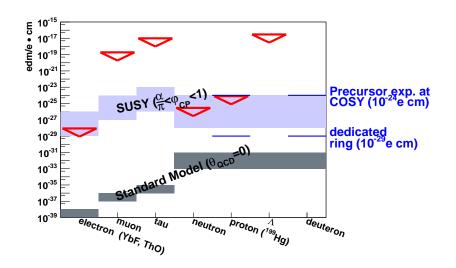
Excess of matter in the universe:


	observed	SM prediction
$\eta = rac{n_B - n_{ar{B}}}{n_{\gamma}}$	6×10^{-10}	10^{-18}

Sakharov (1967): \mathcal{CP} violation needed for baryogenesis


 \Rightarrow New \mathcal{CP} violating sources beyond SM needed to explain this discrepancy

They could manifest in EDMs of elementary particles


What do we know about EDMs?

EDM: Current Upper Limits

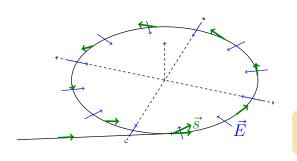
EDM: Current Upper Limits

FZ Jülich: EDMs of **charged** hadrons: p, d, ³He

Why Charged Particle EDMs?

- no direct measurements for charged hadrons exist
- potentially higher sensitivity (compared to neutrons):
 - longer life time,
 - more stored protons/deuterons
- complementary to neutron EDM:

$$d_d \stackrel{?}{=} d_p + d_n \Rightarrow \text{access to } \theta_{QCD}$$


 EDM of one particle alone not sufficient to identify CP-violating source

→ Jan Bsaisou, HK 9.1

How to measure charged particle EDMs?

Experimental Method: Generic Idea

For **all** EDM experiments (neutron, proton, atoms, ...): Interaction of \vec{d} with electric field \vec{E} For charged particles: apply electric field in a storage ring:

$$rac{\mathrm{d}ec{s}}{\mathrm{d}t}\propto extbf{d}ec{E} imesec{s}$$

In general:

$$rac{\mathrm{d}ec{oldsymbol{s}}}{\mathrm{d}t} = ec{\Omega} imes ec{oldsymbol{s}}$$

build-up of vertical polarization $s_{\perp} \propto |{\it d}|$

Experimental Requirements

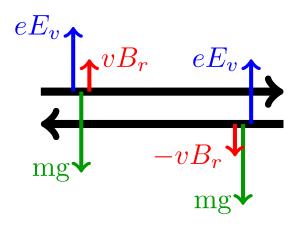
- high precision storage ring
 (alignment, stability, field homogeneity)
- high intensity beams ($N = 4 \cdot 10^{10}$ per fill)
- polarized hadron beams (P = 0.8)
- large electric fields (E = 10 MV/m)
- long spin coherence time ($\tau = 1000 \, s$),
- polarimetry (analyzing power A = 0.6, acc. f = 0.005)

$$\sigma_{\text{stat}} \approx \frac{1}{\sqrt{Nf}\tau PAE} \Rightarrow \sigma_{\text{stat}}(1\text{year}) = 10^{-29} \, e \cdot \text{cm}$$

challenge: get σ_{SVS} to the same level

Systematics

Major source:


Radial B field mimics an EDM effect:

- Difficulty: even small radial magnetic field, B_r can mimic EDM effect if : $\mu B_r \approx dE_r$
- Suppose $d = 10^{-29} e \cdot \text{cm}$ in a field of E = 10 MV/m
- This corresponds to a magnetic field:

$$B_r = \frac{dE_r}{\mu_N} = \frac{10^{-22} \text{eV}}{3.1 \cdot 10^{-8} \text{eV/T}} \approx 3 \cdot 10^{-17} \text{T}$$

Solution: Use two beams running clockwise and counter clockwise, separation of the two beams is sensitive to B_r

Systematics

Sensitivity needed: $1.25 \, \text{fT} / \sqrt{\text{Hz}}$ (possible with SQUID technology)

$$\tfrac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \tfrac{e}{m} [G\vec{B} + \left(G - \tfrac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E} + \tfrac{m}{e\,s} \mathbf{O}(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

 Ω : angular precession frequency

d: electric dipole moment

G: anomalous magnetic moment

 γ : Lorentz factor

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} \left[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1} \right) \vec{V} \times \vec{E} + \frac{m}{es} \mathbf{d} (\vec{E} + \vec{V} \times \vec{B}) \right] \times \vec{s}$$

 Ω : angular precession frequency d: electric dipole moment

G: anomalous magnetic moment γ : Lorentz factor

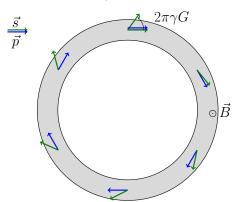
dedicated ring: pure electric field,

freeze horizontal spin motion $\left(G - \frac{1}{\gamma^2 - 1}\right) = 0$

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + (G - \frac{1}{2}) \vec{V} \times \vec{E} + \frac{m}{es} \vec{o} (\vec{E} + \vec{V} \times \vec{B})] \times \vec{s}$$

- Ω : angular precession frequency d: electric dipole moment
- *G*: anomalous magnetic moment γ : Lorentz factor
- **COSY:** pure magnetic ring access to EDM via motional electric field $\vec{v} \times \vec{B}$, requires additional radio-frequency \vec{E} and \vec{B} fields

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{\sqrt{2} - 1}\right) \vec{V} \times \vec{E} + \frac{m}{e\,s} d(\vec{E} + \vec{V} \times \vec{B})] \times \vec{s}$$


- Ω : angular precession frequency d: electric dipole moment
- *G*: anomalous magnetic moment γ : Lorentz factor
- **COSY:** pure magnetic ring access to EDM via motional electric field $\vec{v} \times \vec{B}$, requires additional radio-frequency E and B fields

neglecting EDM term

spin tune: $u_{\mathcal{S}} pprox rac{|\vec{\Omega}|}{\omega_{\mathrm{rev}}} = \gamma G$

Spin Tune ν_s

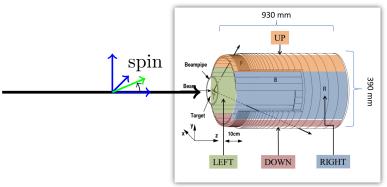
Spin tune: $\nu_s = \gamma G = \frac{\text{nb. of spin rotations}}{\text{nb. of particle revolutions}}$

deuterons: $p_d = 1 \text{ GeV/}c$ ($\gamma = 1.13$), G = -0.14256177(72)

$$\Rightarrow \nu_s = \gamma G \approx -0.161$$

Results of first test measurements

Cooler Synchrotron COSY



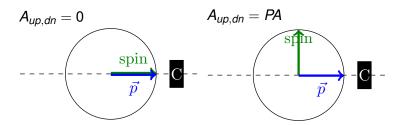
COSY provides (polarized) protons and deuterons with $p=0.3-3.7 \mbox{GeV}/c$

⇒ Ideal starting point for charged particle EDM searches

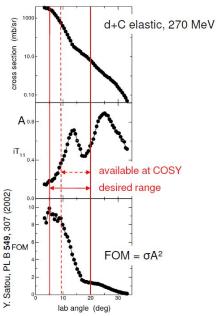
Polarimeter

elastic deuteron-carbon scattering Up/Down asymmetry ∞ horizontal polarization $\to \nu_{\it s} = \gamma \it G$ (Left/Right asymmetry ∞ vertical polarization $\to \it d$)

$$N_{up.dn} \propto 1 \pm PA \sin(\nu_s f_{rev} t), \quad f_{rev} \approx 781 \, \mathrm{kHz}$$


→ Nils Hempelmann, HK 55.2

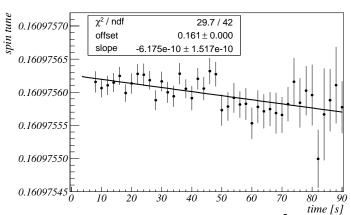
Asymmetry Measurements


• Detector signal $N^{up,dn} \propto (1 \pm P A \sin(\gamma G f_{rev} t))$

$$A_{up,dn} = \frac{N^{up} - N^{dn}}{N^{up} + N^{dn}} = PA \sin(\gamma G f_{rev} t)$$

A: analyzing power, P: polarization

Polarimetry


Cross Section & Analyzing Power for deuterons

$$N_{up,dn} \propto \ (1 \pm P A \sin(\nu_s f_{rev} t))$$

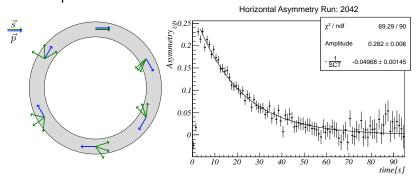
$$egin{aligned} A_{up,dn} &= rac{N^{up} - N^{dn}}{N^{up} + N^{dn}} \ &= P \, A \, \sin(
u_{s} f_{rev} t) \end{aligned}$$

A: analyzing powerP: beam polarization

Results: Spin Tune ν_s

- Spin tune ν_s can be determined to $\approx 10^{-8}$ in 2 s
- Average $\overline{\nu_s}$ in cycle ($\approx 100 \, \text{s}$) determined to 10^{-10} (for G = 0, $d = 10^{-24} e \cdot \text{cm} \Rightarrow \text{spin tune} = 5 \cdot 10^{-11}$)

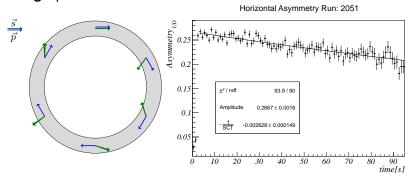
→ Dennis Eversmann, HK 9.1, Artem Saleev: HK 55.3


Spin Tune ν_s

Experiment	Gedankenexperiment	
$G \approx -0.14$, $d \approx 0$	$G = 0, d = 10^{-24} e \text{cm}$	
$ u_{\mathtt{S}} = \gamma G = -0.16$	$ u_{s} = rac{\textit{vm}\gamma \textit{d}}{\textit{es}} = 5 \cdot 10^{-11}$	

compare to $\sigma(\nu_s)=10^{-10}\,$ in 100 s measurement

Results: Spin Coherence Time (SCT)


Short Spin Coherence Time

cooled bunched beam \Rightarrow SCT τ = 20 s

Results: Spin Coherence Time (SCT)

Long Spin Coherence Time

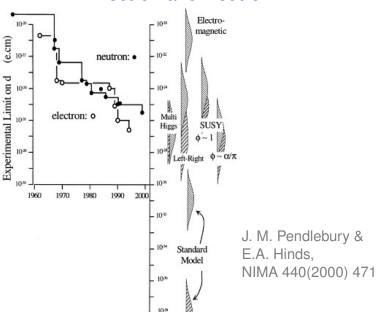
using correction sextupole to correct for higher order effects leads to SCT of τ =400 s

JEDI Collaboration

- JEDI = Jülich Electric Dipole Moment Investigations
- ≈ 100 members
 (Aachen, Dubna, Ferrara, Indiana, Ithaca, Jülich, Krakow, Michigan, Minsk, Novosibirsk, St. Petersburg, Stockholm, Tbilisi, . . .)

Summary & Outlook

- EDMs of elementary particles are of high interest to disentangle various sources of CP violation searched for to explain matter - antimatter asymmetry in the Universe
- EDM of charged particles can be measured in storage rings


Plans in Jülich: $10^{-24}e$ cm at COSY

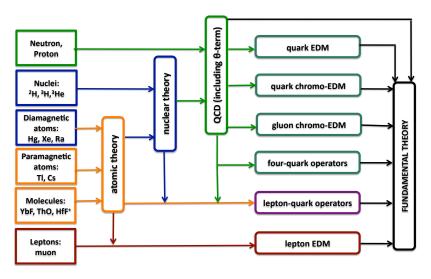
10⁻²⁹ e cm with dedicated ring

- Experimentally very challenging because effect is tiny
- First promising results from test measurements at COSY

Spare

Electron and Neutron EDM

EDM: SUSY Limits


electron:

MSSM:
$$\varphi \approx 1 \Rightarrow d = 10^{-24} - 10^{-27} e \cdot \text{cm}$$
 $\varphi \approx \alpha/\pi \Rightarrow d = 10^{-26} - 10^{-30} e \cdot \text{cm}$

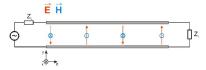
neutron:

MSSM:
$$d = 10^{-24} e \cdot \text{cm} \cdot \sin \phi_{CP} \frac{200 \text{GeV}}{M_{SUSY}}$$

Sources of CP Violation

J. de Vries

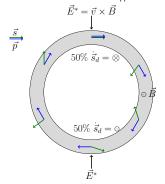
Electrostatic Deflectors



- \bullet large-grain Nb at plate separation of a few cm yields \approx 20MV/m

Wien Filter

Conventional design R. Gebel, S. Mey (FZ Jülich)

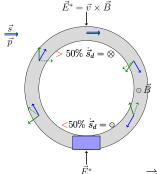

stripline design D. Hölscher, J. Slim (IHF RWTH Aachen)

1. Pure Magnetic Ring

$$ec{\Omega} = rac{e\hbar}{mc} \left(G ec{B} + rac{1}{2} rac{\eta}{ec{v}} imes ec{B}
ight)$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.


E* field in the particle rest frame tilts spin due to EDM up and down ⇒ no net EDM effect

1. Pure Magnetic Ring

$$ec{\Omega} = rac{e\hbar}{mc} \left(G ec{B} + rac{1}{2} rac{\eta ec{v} imes ec{B}
ight)$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

E* field in the particle rest frame tilts spin due to EDM up and down ⇒ no net EDM effect

Use resonant "magic Wien-Filter" in ring $(\vec{E} + \vec{v} \times \vec{B} = 0)$:

 $E^* = 0 \rightarrow \text{part.}$ trajectory is not affected but

 $B^* \neq 0 \rightarrow \text{mag.}$ mom. is influenced

⇒ net EDM effect can be observed!

2. Pure Electric Ring

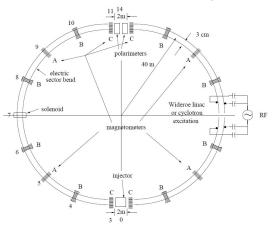
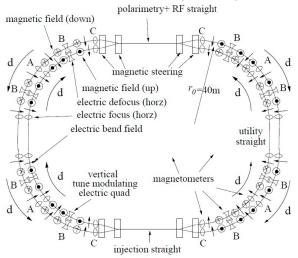
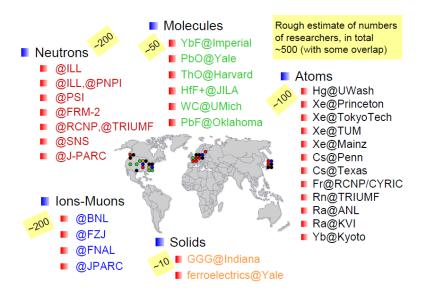


Figure 3: An all-electric storage ring lattice for measuring the electric dipole moment of the proton. Except for having longer straight sections and separated beam channels, the all-in-one lattice of Fig. 1 is patterned after this lattice. Quadrupole and sextupole families, and tunes and lattice functions of the allin-one lattice of Fig. 1 will be quite close to those given for this lattice in reference[3]. The match will be even closer with magnetic field set to zero for proton operation.

Brookhaven National Laboratory (BNL) Proposal

3. Combined \vec{E}/\vec{B} ring



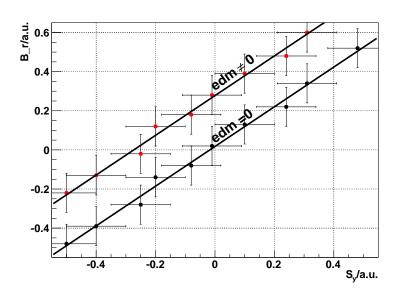

Figure 1: "All-In-One" lattice for measuring EDM's of protons, deuterons, and helions.

Under discussion at Forschungszentrum Jülich (design: R. Talman)

Summary of different options

	\odot	
1.) pure magnetic ring (Jülich)	existing (upgraded) COSY ring can be used, shorter time scale	lower sensitivity
2.) pure electric ring (BNL)	no \vec{B} field needed	works only for p
3.) combined ring (Jülich)	works for $p, d, {}^{3}He, \dots$	both \vec{E} and \vec{B} required

EDM Activities Around the World


K. Kirch

Systematics

- Splitting of beams: $\delta y = \pm \frac{\beta c R_0 B_r}{E_r Q_y^2} = \pm 1 \cdot 10^{-12} \, \text{m}$
- $Q_V \approx 0.1$: vertical tune
- Modulate $Q_y = Q_y^0 (1 m\cos(\omega_m t)), \ m \approx 0.1$
- Splitting causes B field of $\approx 0.4 \cdot 10^{-3} \, \text{fT}$
- in one year: 10^4 fills of $1000 \, \text{s} \Rightarrow \sigma_B = 0.4 \cdot 10^{-1} \text{fT}$ per fill needed
- Need sensitivity 1.25 fT/ $\sqrt{\text{Hz}}$

D. Kawall

Systematics

