Electric Dipole Moment Measurements at Storage Rings

J. Pretz RWTH Aachen & FZ Jülich on behhalf of the JEDI collaboration

Vienna, Discrete18, November 2018

Outline

- Motivation for Electric Dipole Moment (EDM) Measurements
- **Charged** particle EDM measurements achievements, activities, plans

Motivation for Electric Dipole Moment (EDM) Measurements

Electric Dipole Moments (EDM)

- permanent separation of positive and negative charge
- fundamental property of particles (like magnetic moment, mass, charge)
- existence of EDM only possible via violation of time reversal T and parity P symmetry
- has nothing do due with electric dipole moments observed in some molecules (e.g. water molecule)

${\mathcal T}$ and ${\mathcal P}$ violation of EDM

 $\Rightarrow \text{EDM measurement tests violation of fundamental symmetries } \mathcal{P} \text{ and } \mathcal{T}(\stackrel{\mathcal{CPT}}{=} \mathcal{CP})$

$\mathcal{CP}-Violation$ & connection to EDMs

Standard Model			
Weak interaction			
CKM matrix	ightarrow unobservably small EDMs		
Strong interaction			
θ_{QCD}	\rightarrow best limit from neutron EDM		
beyond Standard Model			
e.g. SUSY	\rightarrow accessible by EDM measurements		

EDM in SM and SUSY

EDM in SM and SUSY

EDM in SM and SUSY

Connection to cosmology

Excess of matter in the universe:

	observed	SCM* prediction
$\eta = \frac{n_B - n_{\bar{B}}}{n_{\gamma}}$	$6 imes 10^{-10}$	10 ⁻¹⁸

Sakharov (1967): \mathcal{CP} violation needed for baryogenesis

 \Rightarrow New \mathcal{CP} violating sources beyond SM needed to explain this discrepancy

They could show up in EDMs of elementary particles

* SCM: Standard Cosmological Model

EDM: Current Upper Limits

EDM: Current Upper Limits

FZ Jülich: EDMs of **charged** hadrons: *p*, *d*, ³He

Why Charged Particle EDMs?

J. de Vries

Charged particle EDM measurements: achievements, activities, plans

Experimental Method: Generic Idea

For **all** EDM experiments (neutron, proton, atoms, ...): Interaction of \vec{d} with electric field \vec{E}

For charged particles: apply electric field in a storage ring:

build-up of vertical polarisation $\vec{s}_{\perp} \propto \vec{d}$ (can be measured via elastic scattering on carbon)

Spin Precession: Thomas-BMT Equation

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$$

$$ec{d} = \eta rac{q}{2m} ec{s}, \quad ec{\mu} = 2(G+1) rac{q}{2m} ec{s}$$

BMT: Bargmann, Michel, Telegdi

Spin Precession: Thomas-BMT Equation

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[G\vec{B} + \left(G - \frac{1}{\sqrt{2} - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$$

$$\vec{d} = \eta \frac{q}{2m} \vec{s}, \quad \vec{\mu} = 2(G + 1) \frac{q}{2m} \vec{s}$$
BMT: Bargmann, Michel, Telegdi

Spin Precession: Thomas-BMT Equation

$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$			
	\bigcirc	\odot	
1.) pure electric ring	no \vec{B} field needed, CW/CCW beams simultaneously	works only for particles with $G > 0$ (e.g. p)	
2.) combined ring	works for $p, d, {}^{3}$ He,	both \vec{E} and \vec{B} required	
3.) pure magnetic ring	existing (upgraded) COSY ring can be used, shorter time scale	lower sensitivity, precession due to <i>G</i> , i.e. no frozen spin	

ideal: suppress precession due to magnetic dipole moment (frozen spin)

$$ec{d} = \eta rac{q}{2m} ec{s}, \quad ec{\mu} = 2(G+1) rac{q}{2m} ec{s}$$

BMT: Bargmann, Michel, Telegdi

Different Options

 First measurement with existing magnetic ring COSY at FZ

Jülich Electric Dipole Moment Investigations

 Plans for a prototype/dedicated ring: CPEDM collaboration (CERN,JEDI,Korea, ...)

ÇP E D M

preparing input for

European Strategy for Particle Physics

Experimental Requirements

- high precision storage ring → systematics (alignment, stability, field homogeneity)
- high intensity beams ($N = 4 \cdot 10^{10}$ per fill)
- polarized hadron beams (P = 0.8)
- long spin coherence time ($\tau = 1000 \text{ s}$),
- large electric fields (E = 10 MV/m)
- polarimetry (analyzing power A = 0.6, acc. f = 0.005)

$$\sigma_{\text{stat}} \approx \frac{\hbar}{\sqrt{Nt}\tau PAE} \Rightarrow \sigma_{\text{stat}}(1\text{year}) = 10^{-29} \, e \cdot \text{cm}$$

challenge: get σ_{sys} to the same level

Test Measurements at COSY

COoler SYnchrotron COSY at Forschungszentrum Jülich provides (polarized) protons and deuterons with p = 0.3 - 3.7 GeV/c

 \Rightarrow Ideal starting point for charged hadron EDM searches

Recent achievements

- Spin coherence time: τ > 1000 s (PRL 117, 054801 (2016))
- Spin tune: $\overline{\nu_s} = -0.16097 \cdots \pm 10^{-10}$ in 100 s (PRL 115, 094801 (2015))
- Spin feedback: polarisation vector kept within 12 degrees (PRL 119 (2017) no.1, 014801)

(all data shown were taken with deuterons, with $p \approx 1 \text{ GeV}/c$)

mandatory to reach statistical sensitivity
 & 3 shows that we can measure and manipulate polarisation vector with high accuracy

Spin Precession

Towards a first deuteron EDM measurement

- Spin Manipulation and Measurement \checkmark
- In magnetic storage ring EDM just causes oscillation with tiny oscillation in vertical plane
- Wien-filter operating at spin precession frequency leads to vertical polarisation build-up due to EDM (and unfortunately also due to misalignments of storage ring elements)

 \Rightarrow EDM measurement possible at magnetic storage ring

Wien filter

field: 2.7 · 10⁻²Tmm for 1kW input power
frequency range: 100 kHz-2MHz

Results from Nov. 2017 Beam Time

Results from Nov. 2017 Beam Time

- \approx 1 day of data taking \Rightarrow stat. error \approx 10⁻¹⁹*e*cm not a problem
- simulations are ongoing to understand effects of misalignments (here mimicked by rotation of WF)

- required for first EDM measurement:
 - maximize spin coherence time (SCT)
 - precise measurement of spin precession (spin tune)
 - polarisation feed back
 - RF- Wien filter

- required for first EDM measurement:
 - maximize spin coherence time (SCT)
 - precise measurement of spin precession (spin tune)
 - polarisation feed back
 - RF- Wien filter
- to reduce systematic errors:
 - development of high precision beam position monitors
 - beam based alignment

- required for first EDM measurement:
 - maximize spin coherence time (SCT)
 - precise measurement of spin precession (spin tune)
 - polarisation feed back
 - RF- Wien filter
- to reduce systematic errors:
 - development of high precision beam position monitors
 - beam based alignment
- Interpretation of results:
 - spin tracking simulation (measured polarisation \rightarrow EDM)
 - theory (pEDM, dEDM, eEDM, $\ldots \rightarrow$ underlying theory)

- required for first EDM measurement:
 - maximize spin coherence time (SCT)
 - precise measurement of spin precession (spin tune)
 - polarisation feed back
 - RF- Wien filter
- to reduce systematic errors:
 - development of high precision beam position monitors
 - beam based alignment
- Interpretation of results:
 - spin tracking simulation (measured polarisation \rightarrow EDM)
 - theory (pEDM, dEDM, eEDM, $\ldots \rightarrow$ underlying theory)
- Design of dedicated storage ring:
 - accelerator lattice
 - polarimeter development
 - development of electro static deflectors

- required for first EDM measurement:
 - maximize spin coherence time (SCT)
 - precise measurement of spin precession (spin tune)
 - polarisation feed back
 - RF- Wien filter
- to reduce systematic errors:
 - development of high precision beam position monitors
 - beam based alignment
- Interpretation of results:
 - spin tracking simulation (measured polarisation \rightarrow EDM)
 - theory (pEDM, dEDM, eEDM, $\ldots \rightarrow$ underlying theory)
- Design of dedicated storage ring:
 - accelerator lattice
 - polarimeter development
 - development of electro static deflectors
- other observables:
 - axion searches (axions may lead to oscillating EDM)

Axion Search

Summary

- EDMs are unique probe to search for new CP-violating interactions
- charged particle EDMs can be measured in storage rings
- step wise approach: precursor at COSY \rightarrow prototype ring (100 m) \rightarrow dedicated ring (400 m)