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Electric Dipole Moments (EDM)

@ permanent separation of
positive and negative charge

@ fundamental property of
particles
(like magnetic moment, mass,
charge)

@ existence of EDM only possible
via violation of time reversal T
and parity P symmetry

@ has nothing do due with electric
dipole moments observed in
some molecules (e.g. water
molecule)

Spin §
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T and P violation of EDM
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= EDM measurement tests violation of fundamental
symmetries P and T( CP) J
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CP—Violation & connection to EDMs

Standard Model

Weak interaction
CKM matrix — unobservably small EDMs
Strong interaction

faco — best limit from neutron EDM

beyond Standard Model

e.g. SUSY — accessible by EDM measurements




EDM in SM and SUSY
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EDM in SM and SUSY




EDM in SM and SUSY
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Connection to cosmology

Excess of matter in the universe:

observed | SCM* prediction

Np — Nz
17:75 B |l6x10710| 1018
ny

Sakharov (1967): CP violation needed for baryogenesis

= New CP violating sources beyond SM needed to explain this
discrepancy

They could show up in EDMs of elementary particles

* SCM: Standard Cosmological Model
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EDM: Current Upper Limits
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EDM: Current Upper Limits
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Why Charged Particle EDMs?
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Charged particle EDM
measurements:
achievements, activities,
plans



Experimental Method: Generic Idea

For all EDM experiments (neutron, proton, atoms, ...):
Interaction of d with electric field £

For charged particles: apply electric field in a storage ring:

d
d—?ochxs

In general:

build-up of vertical polarisation 5, o d
(can be measured via elastic scattering on carbon)
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Spin Precession: Thomas-BMT Equation

ds ﬁxé':_q[G§+<G—721_1>|7><l_:"+g(l_:"+|7><§)]><§ J

dt m

d=n—3 =2(G+1)=—s
NpmS: A=2(G+1)5
BMT: Bargmann, Michel, Telegdi
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Spin Precession: Thomas-BMT Equation
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BMT: Bargmann, Michel, Telegdi
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Spin Precession: Thomas-BMT Equation

s _5,.5-29 1 Vo ELIE B
dt—st_m[GB+<G 7_1)vxf5+2(E B)] J
1.) pure electric ring no B field needed, works only for particles
CW/CCW beams simultaneously with G > 0 (e.g. p)
2.) combined ring works for p, d, *He, ... both E and B
required
3.) pure magnetic ring existing (upgraded) COSY lower sensitivity,
ring can be used, precession due to G,
shorter time scale i.e. no frozen spin

ideal: suppress precession due to magnetic dipole moment
(frozen spin)

3 q = — q =

d=n-——Ss, [ =2(G+1)=—s
N5ms, A=2G+1)5

BMT: Bargmann, Michel, Telegdi
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Different Options

@ First measurement with existing
magnetic ring COSY at FZ
JU|ICh B

JU|ICh Electrlc Dlpole Moment
Investigations

@ Plans for a prototype/dedicated
ring:
CPEDM collaboration
(CERN,JEDI,Korea, ...)

i E (DM

preparing input for
European Strategy for Particle Physics
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Experimental Requirements

@ high precision storage ring — systematics
(alignment, stability, field homogeneity)

@ high intensity beams (N = 4 - 100 per fill)

@ polarized hadron beams (P = 0.8)

@ long spin coherence time (7 = 10005s),

@ large electric fields (E = 10 MV/m)

@ polarimetry (analyzing power A = 0.6, acc. f = 0.005)

h
o ~— =g lyear) = 1072° e-cm
stat ™ /N7 pAE stat(1year)

challenge: get ogys to the same level
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Test Measurements at COSY
' =T it 3

COoler SYnchrotron COSY at Forschungszentrum Jilich
provides (polarized) protons and deuterons with
p=0.3-3.7GeV/c

= ldeal starting point for charged hadron EDM searches

21/36



Recent achievements

@ Spin coherence time: 7 > 1000 s
(PRL 117, 054801 (2016))

@ Spin tune: 7s = —0.16097--- + 10~ '%in 100s
(PRL 115, 094801 (2015))

© Spin feedback: polarisation vector kept within 12 degrees
(PRL 119 (2017) no.1, 014801)

(all data shown were taken with deuterons, with p ~ 1 GeV/c)

(D mandatory to reach statistical sensitivity
@ & @ shows that we can measure and manipulate
polarisation vector with high accuracy
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Spin Precession
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Normalized Polarization

Spin Coherence Time (SCT)
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Normalized Polarization

Spin Coherence Time (SCT)
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Towards a first deuteron EDM measurement

@ Spin Manipulation and Measurement \/

@ In magnetic storage ring EDM just causes oscillation with
tiny oscillation in vertical plane

@ Wien-filter operating at spin precession frequency leads to
vertical polarisation build-up due to EDM
(and unfortunately also due to misalignments of storage
ring elements)

= EDM measurement possible at magnetic storage ring J
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Wien filter

o field: 2.7 - 10~2Tmm for 1kW input power
@ frequency range: 100 kHz-2MHz

Support for geodetics

"}r

Support structure
for electrodes

BPM
(Rogowski coil)
Copper
electrodes

Vacuum vessel with
small angle rotator

~1m
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spin rotation [a.u.]
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Results from Nov. 2017 Beam Time
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Results from Nov. 2017 Beam Time

preliminary
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spin rotation [a.u.]

o

~ 1 day of data taking = stat. error ~ 10~ '°ecm not a
problem

simulations are ongoing to understand effects of
misalignments (here mimicked by rotation of WF)
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Activities
@ required for first EDM measurement:
@ maximize spin coherence time (SCT)
precise measurement of spin precession (spin tune)

polarisation feed back
RF- Wien filter
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Activities
@ required for first EDM measurement:
@ maximize spin coherence time (SCT)
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@ to reduce systematic errors:
e development of high precision beam position monitors
o beam based alignment
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Activities
@ required for first EDM measurement:
@ maximize spin coherence time (SCT)
@ precise measurement of spin precession (spin tune)
e polarisation feed back
o RF- Wien filter
@ to reduce systematic errors:
e development of high precision beam position monitors
o beam based alignment
@ Interpretation of results:
@ spin tracking simulation (measured polarisation — EDM)
o theory (pEDM, dEDM, eEDM, ... — underlying theory )
@ Design of dedicated storage ring:
e accelerator lattice
e polarimeter development
e development of electro static deflectors
@ other observables:
@ axion searches
(axions may lead to oscillating EDM)
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Axion Search

Oscillation Frequency (Hz)
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Summary

@ EDMs are unique probe to search for new CP-violating
interactions
@ charged particle EDMs can be measured in storage rings

@ step wise approach: precursor at COSY — prototype ring
(100 m) — dedicated ring (400 m)
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