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Motivation

Standard Model of Particle Physics successful but . . .
Fails to explain matter-antimatter asymmetry in the universe
Why is CP-violation in the strong sector not present (although allowed)?
What does Dark Matter consists of?
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source:M. De Leo, Wikipedia
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Axion/Axion Like Particle (ALPs)
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Axions/Axion Like Particles (ALPs)

hypothetical pseudoscalar elementary particle postulated by
Peccei,Quinn,Wilczek,Weinberg to resolve the strong CP problem
axion are also Dark Matter candidates
axion like particles (ALP): similar properties as axions, (but ALPs don’t solve
the strong QCD problem)
huge experimental effort to search for axion/ALPs (haloscopes, helioscopes,
light shining through the wall, mainly coupling to photons)
in storage rings with polarized beams axion-gluon/nucleon coupling can be
studied

[1]
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Axion Coupling
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Electric Dipole Moment (EDM) axion wind term

For low axion masses, if axions saturate dark matter they can be described by

classical field: a(t) = a0 cos(ωat + ϕa) , mac2 = ~ωa , Coupling ∝ 1
fa
∝ ma
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Electric Dipole Moment (EDM) axion wind term

studied by many accessible in storage ring experiments
experiments with spin polarized beams
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Experimental Method
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Principle of Experiment

Ωrev

ΩMDM
ΩMDM

!= ωa

~B

~P

Observe polarization vector ~P in storage ring
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Spin Motion in Storage Ring
with respect to momentum vector in magnetic field

d~S
dt

= (~ΩMDM

+ ~ΩEDM + ~Ωwind

)× ~S

~ΩMDM = − q
m

G~B , ~µ = g
q~
2m

~S = (1 + G)
q~
m
~S

~S ~µ

~B
S spin
B magnetic field
G magnetic anomaly
g g-factor
µ magnetic moment
q,m mass, charge
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Spin Motion in Storage Ring
with respect to momentum vector in magnetic field
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|~ΩMDM| � |~ΩEDM|, |~Ωwind|

longitudinal

radial

vertical

~B

~E∗ = ~β × ~B

~β

axion field: a(t) = a0 cos(ωat + ϕ0) d = dDC + dAC cos(ωat + ϕ0) (EDM)
~ωa = mac2 dAC = a0gadγ ∝ Cg

oscillating EDM � � ALP-EDM coupling
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Principle of Experiment

~B

store polarized hadrons

flip polarization into horizontal
plane,
maintain precession in horizontal
plane for ≈ 100s

if mac2 ≡ ~ωa
!

= ΩMDM~,
polarization will turn out of the
horizontal plane, resulting in a
vertical polarization component, if
the relative phase of axion field
and a spin precession match.
Vertical polarization can be
measured using a carbon target
and a polarimeter.
Left-right asymmetry ALR is
proportional to vertical polarization
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Properties of Method

AC measurement (i.e. systematics are under control)
axion wind effect enhanced in storage rings (vparticle ≈ c)

~Ωwind = − 1
S~

CN

2fa

(
~∂0a(t)

)
~β

One can look for ALPs at a given mass given by ΩMDM or scan a certain mass
range by varying ΩMDM
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Expected Build-up

a(t) = a0 cos(ωat + ϕa) axion phase ϕa not known!
If your are unlucky, build-up is zero.
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[5]
Remedy: Inject 4 pulses with 90 degree polarization phase difference.

→ You cannot miss the signal.
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Analysis & Results
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COoler SYnchrotron COSY
pol. deuteron beam
p ≈ 970MeV/c
polarization P ≈ 0.40
≈ 109 stored particles per
300 s cycle
ΩMDM ≈ 2π · 120 kHz
JEDI (Jülich Electric
Dipole moment
Investigations)
collaboration
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Left-Right Asymmetry ALR Scan
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at the corresponding
frequency ωa ∝ ma

determine jump ∆ALR for
every time bin
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Typical Asymmetry Measurement
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Problem

Fit will always find an amplitude (Â ≥ 0), now use P̂ =
Â
σ
, σ : uncertainty

f (P̂|P) dP̂ = e− P̂2+P2
2 P̂I0(P̂P) dP̂, Rice distribution
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P̂ = Â/σ → Confidence Interval

procedure based on
Feldman-Cousins methods [6]
on vertical axis read off the
measured P̂
vertical axis gives lower and upper
limit for true P
limit on P directly related to limit on
dAC
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Results on Oscillating EDM dAC, 90% CI
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[7] submitted to PRX
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Axion Coupling to EDM operator gadγ (Axion/Gluon Coupling))
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Axion Wind Effect: Coupling to Nucleons CN/fa
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Next steps?
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How to Explore a Wider Mass Range ma

Up to now experiment was performed in a very narrow frequency range. How to
access wider mass range?

ΩMDM = γGΩrev

1 modify beam energy (changes γ,Ωrev )
2 use different nuclei (changes G)
3 Use additional electric field

~ΩMDM = − q
m

[
G~B −

(
G − 1

γ2 − 1

) ~β × ~E
c

]
allows to reduce ~ΩMDM down to 0
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Axion Searches at Storage Rings
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Estimate for one year
(107 seconds) running
time [5] for COSY and a
prototype storage ring
for EDM measurements



Summary & Outlook
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Summary & Outlook

Axion/ALPs well motivated candidates for cold dark matter
First storage ring experiment at COSY performed by JEDI collaboration to
search for ALPs
In an engineering run (few days of data taking) limits reached which are
comparable to other experiments
In general: Experiments with polarized beams (and targets) at storage ring
have great potential ...
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Spare Slides
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90% CI on Axion Gluon Coupling Cg/fa
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Amplitudes Â for a Single Cycle
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CI for eight Cycles
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P̂ distribution for 8 cycles
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Expected Jump in Polarisataion
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Artificial Signal Using RF Wien Filter
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