Electric Dipole Moment Measurements at Storage Rings

J. Pretz RWTH Aachen & FZ Jülich

Bonn, July 2015

Outline

Introduction: Electric Dipole Moments (EDMs): What is it? Why is it interesting? What do we know about EDMs?

Experimental Method:

How to measure charged particle EDMs?

• Results of first test measurements:

Spin Coherence time and Spin tune

What is it?

Electric Dipoles

	atomic physics	hadron physics
charges	е	
$ \vec{r}_1 - \vec{r}_2 $	1 Å= 10 ⁻⁸ cm	
EDM		
naive expectation	10 ^{−8} <i>e</i> · cm	
observed	water molecule	
	2 · 10 ^{−8} <i>e</i> · cm	

	atomic physics	hadron physics
charges	е	е
$ \vec{r}_1 - \vec{r}_2 $	1 Å= 10 ⁻⁸ cm	$1 \mathrm{fm} = 10^{-13} \mathrm{cm}$
EDM		
naive expectation	10 ^{−8} <i>e</i> · cm	$10^{-13} e \cdot cm$
observed	water molecule	neutron
	2 · 10 ^{−8} <i>e</i> · cm	$< 3 \cdot 10^{-26} e$ · cm

Neutron EDM

neutron EDM of $d_n = 3 \cdot 10^{-26} e$ cm corresponds to separation of u- from d-quarks of $\approx 5 \cdot 10^{-26}$ cm

 $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Mass $m = 1.0086649160 \pm 0.0000000004$ u Mass $m = 939.565379 \pm 0.000021$ MeV ^[a] $(m_n - m_{\overline{n}}) / m_n = (9 \pm 6) \times 10^{-5}$ $m_n - m_p = 1.2933322 \pm 0.0000004 \text{ MeV}$ = 0.00138844919(45) uMean life $\tau = 880.3 \pm 1.1 \text{ s}$ (S = 1.9) $c\tau = 2.6391 \times 10^8 \text{ km}$ Magnetic moment $\mu = -1.9130427 \pm 0.0000005 \,\mu_N$ Electric dipole moment $d < 0.29 \times 10^{-25} e \text{ cm}$. CL = 90% Mean-square charge radius $\langle r_n^2 \rangle = -0.1161 \pm 0.0022$ fm^2 (S = 1.3) Magnetic radius $\sqrt{\langle r_M^2 \rangle} = 0.862^{+0.009}_{-0.008}$ fm Electric polarizability $\alpha = (11.6 \pm 1.5) \times 10^{-4} \text{ fm}^3$ Magnetic polarizability $\beta = (3.7 \pm 2.0) \times 10^{-4} \text{ fm}^3$ Charge $q = (-0.2 \pm 0.8) \times 10^{-21} e$ Mean $n\pi$ -oscillation time > 8.6 × 10⁷ s, CL = 90% (free n) Mean $n\overline{n}$ -oscillation time > 1.3×10^8 s, CL = 90% ^[f] (bound n) Mean nn'-oscillation time > 414 s. CL = 90% [g]

Operator $\vec{d} = q\vec{r}$

is odd under parity transformation $(\vec{r} \rightarrow -\vec{r})$:

 $\mathcal{P}^{-1}\vec{d}\mathcal{P}=-\vec{d}$

Consequences: In a state $|a\rangle$ of given parity the expectation value is 0:

$$\langle a | \vec{d} | a \rangle = - \langle a | \vec{d} | a \rangle$$

but if $| a \rangle = \alpha | P = + \rangle + \beta | P = - \rangle$
in general $\langle a | \vec{d} | a \rangle \neq 0 \Rightarrow$ i.e. molecules

EDM of molecules

ground state: mixture of $\Psi_s = \frac{1}{\sqrt{2}} (\Psi_1 + \Psi_2), P = +$ $\Psi_a = \frac{1}{\sqrt{2}} (\Psi_1 - \Psi_2), P = -$

Molecules can have large EDM because of degenerated ground states with different parity

Molecules can have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite parity and cannot posses an EDM $P|had >= \pm 1|had >$

Molecules can have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite parity and cannot posses an EDM $P|had >= \pm 1|had >$

unless

 \mathcal{P} and time reversal \mathcal{T} invariance are violated!

${\mathcal T}$ and ${\mathcal P}$ violation of EDM

 $\Rightarrow \text{EDM measurement tests violation of fundamental symmetries } \mathcal{P} \text{ and } \mathcal{T}(\stackrel{\mathcal{CPT}}{=} \mathcal{CP})$

Symmetry (Violations) in Standard Model

	electro-mag.	weak	strong
${\mathcal C}$	\checkmark	ź	\checkmark
${\cal P}$	\checkmark	ź	(√)
$\mathcal{T} \stackrel{\textit{CPT}}{\rightarrow} \mathcal{CP}$	\checkmark	()	(√)

- *C* and *P* are maximally violated in weak interactions (Lee, Yang, Wu)
- *CP* violation discovered in kaon decays (Cronin,Fitch) described by CKM-matrix in Standard Model
- CP violation allowed in strong interaction but corresponding parameter $\theta_{QCD} \lesssim 10^{-10}$ (strong CP-problem)

Sources of $\mathcal{CP}-Violation$

Standard Model		
Weak interaction		
CKM matrix	ightarrow unobservably small EDMs	
Strong interaction		
θ_{QCD}	\rightarrow best limit from neutron EDM	
beyond Standard Model		
e.g. SUSY	\rightarrow accessible by EDM measurements	

Why is it interesting?

Matter-Antimatter Asymmetry

Excess of matter in the universe:

	observed	SM prediction
$\eta = \frac{n_B - n_{\bar{B}}}{n_{\gamma}}$	$6 imes 10^{-10}$	10 ⁻¹⁸

Sakharov (1967): \mathcal{CP} violation needed for baryogenesis

 \Rightarrow New \mathcal{CP} violating sources beyond SM needed to explain this discrepancy

They could manifest in EDMs of elementary particles

What do we know about EDMs?

20/61

EDM: Current Upper Limits

EDM: Current Upper Limits

FZ Jülich: EDMs of **charged** hadrons: *p*, *d*, ³He

Why Charged Particle EDMs?

- no direct measurements for charged hadrons exist
- potentially higher sensitivity (compared to neutrons):
 - longer life time,
 - more stored protons/deuterons
- complementary to neutron EDM:

 $d_d \stackrel{?}{=} d_p + d_n \Rightarrow \text{access to } \theta_{QCD}$

• EDM of one particle alone not sufficient to identify *CP*-violating source

Sources of \mathcal{CP} Violation

J. de Vries

How to measure charged particle EDMs?

Experimental Method: Generic Idea

For **all** EDM experiments (neutron, proton, atoms, ...): Interaction of \vec{d} with electric field \vec{E} For charged particles: apply electric field in a storage ring:

build-up of vertical polarization $s_{\perp} \propto |d|$

Experimental Requirements

- high precision storage ring

 (alignment, stability, field homogeneity)
- high intensity beams ($N = 4 \cdot 10^{10}$ per fill)
- polarized hadron beams (P = 0.8)
- large electric fields (E = 10 MV/m)
- long spin coherence time ($\tau = 1000 \text{ s}$),
- polarimetry (analyzing power A = 0.6, acc. f = 0.005)

$$\sigma_{\text{stat}} \approx \frac{1}{\sqrt{Nt}\tau PAE} \Rightarrow \sigma_{\text{stat}}(1\text{year}) = 10^{-29} \, e \cdot \text{cm}$$

challenge: get σ_{sys} to the same level

Systematics

Major source: Radial *B* field mimics an EDM effect:

- Difficulty: even small radial magnetic field, *B_r* can mimic EDM effect if :μ*B_r* ≈ *dE_r*
- Suppose $d = 10^{-29} e cm$ in a field of $E_r = 10 MV/m$

• This corresponds to a magnetic field:

$$B_r = rac{dE_r}{\mu_N} = rac{10^{-22} eV}{3.1 \cdot 10^{-8} eV/T} pprox 3 \cdot 10^{-17} T$$

Solution: Use two beams running clockwise and counter clockwise, separation of the two beams is sensitive to B_r

Systematics

Sensitivity needed: $1.25 \text{ fT}/\sqrt{\text{Hz}}$ for $d = 10^{-29} e \text{ cm}$ (possible with SQUID technology)

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E} + \frac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

Ω: angular precession frequency *d*: electric dipole moment *G*: anomalous magnetic moment γ: Lorentz factor

BMT: Bargmann, Michel, Telegdi

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E} + \frac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

- Ω: angular precession frequency *d*: electric dipole momentG: anomalous magnetic moment γ: Lorentz factor
- **dedicated ring:** pure electric field, freeze horizontal spin motion $\left(G - \frac{1}{\gamma^2 - 1}\right) = 0$

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} + \frac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

- Ω: angular precession frequency *d*: electric dipole moment *G*: anomalous magnetic moment γ: Lorentz factor
- **COSY:** pure magnetic ring access to EDM via motional electric field $\vec{v} \times \vec{B}$, requires additional radio-frequency *E* and *B* fields to suppress $G\vec{B}$ contribution

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} + \frac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

- Ω: angular precession frequency *d*: electric dipole moment *G*: anomalous magnetic moment γ: Lorentz factor
- **COSY:** pure magnetic ring access to EDM via motional electric field $\vec{v} \times \vec{B}$, requires additional radio-frequency *E* and *B* fields to suppress $G\vec{B}$ contribution

neglecting EDM term spin tune: $\nu_{s} \approx \frac{|\vec{\Omega}|}{|\omega_{\text{cyc}}|} = \gamma G$, $(\vec{\omega}_{cyc} = \frac{e}{\gamma m} \vec{B})$

Results of first test measurements

Cooler Synchrotron COSY

COSY provides (polarized) protons and deuterons with p = 0.3 - 3.7 GeV/c \Rightarrow Ideal starting point for charged particle EDM searches

R & D at COSY

- maximize spin coherence time (SCT)
- precise measurement of spin precession (spin tune)
- rf- Wien filter design and construction
- tests of electro static deflectors (goal: field strength > 10 MV/m)
- development of high precision beam position monitors
- polarimeter development
- spin tracking simulation tools

Experimental Setup

• Inject and accelerate vertically polarized deuterons to $p \approx 1 \text{ GeV}/c$

Experimental Setup

- Inject and accelerate vertically polarized deuterons to $p \approx 1 \text{ GeV}/c$
- flip spin with help of solenoid into horizontal plane

Experimental Setup

- Inject and accelerate vertically polarized deuterons to $p \approx 1 \text{ GeV}/c$
- flip spin with help of solenoid into horizontal plane
- Extract beam slowly (in 100 s) on target
- Measure asymmetry and determine spin precession

Asymmetry Measurements

• Detector signal
$$N^{up,dn} \propto (1 \pm PA \sin(\gamma G\omega_{rev} t))$$

 $A_{up,dn} = \frac{N^{up} - N^{dn}}{N^{up} + N^{dn}} = PA \sin(\gamma G\omega_{rev} t)$

A: analyzing power, P : polarization

Polarimetry

Cross Section & Analyzing Power for deuterons

 $N_{up,dn} \propto (1 \pm PA \sin(\nu_s \omega_{rev} t))$

$$egin{aligned} A_{up,dn} &= rac{N^{up} - N^{dn}}{N^{up} + N^{dn}} \ &= P \, A \, \sin(
u_s \omega_{rev} t) \ &= P \, A \, \sin(2 \pi
u_s n_{turn}) \end{aligned}$$

A : analyzing power P : beam polarization

Polarimeter

elastic deuteron-carbon scattering Up/Down asymmetry \propto horizontal polarization $\rightarrow \nu_s = \gamma G$ Left/Right asymmetry \propto vertical polarization $\rightarrow d$

 $N_{up,dn} \propto 1 \pm PA \sin(\nu_s \omega_{rev} t), \quad f_{rev} pprox 750 \, \mathrm{kHz}$

Up - dn asymmetry Aup, dn

$$A_{up,dn}(t) = AP_0 e^{-t/\tau} \sin(\nu_s \omega_{rev} t + \varphi)$$

• $au
ightarrow {
m spin}$ decoherence

• $\nu_s \rightarrow$ spin tune

time scales: $\nu_s f_{rev} \approx 120 \text{ kHz}$

au in the range 1-1000 s

Polarization Flip

Polarization Flip

Polarization Flip

Results: Spin Coherence Time (SCT)

unbunched beam $\Delta p/p = 10^{-5} \Rightarrow \Delta \gamma/\gamma = 2 \cdot 10^{-6}, T_{rev} \approx 10^{-6} \text{ s}$ \Rightarrow decoherence after < 1 s bunched beam eliminates 1st order effects in $\Delta p/p$ \Rightarrow SCT τ = 20 s

Results: Spin Coherence Time (SCT)

SCT of $\tau =$ 400 s, after correction with sextupoles (chromaticities $\xi \approx$ 0)

Longer cycle

(data taken a few days ago)

deuterons: $p_d = 1$ GeV/c ($\gamma = 1.13$), G = -0.14256177(72)

$$\Rightarrow \nu_{s} = \gamma G \approx -0.161$$

Up - dn asymmetry Aup, dn

Long SCT τ allows now to observe $\nu_s(t) \approx \gamma G$, respectively $\varphi(t)$

$$\begin{array}{lll} \mathcal{A}_{up,dn}(t) &=& \mathcal{AP}_0 \mathrm{e}^{-t/\tau} \sin(\nu_s(t)\omega_{rev}t + \varphi) \\ &=& \mathcal{AP}_0 \mathrm{e}^{-t/\tau} \sin(\nu_s^0\omega_{rev}t + \varphi(t)) \end{array}$$

$$|
u_s(t)| = |
u_s^0| + rac{1}{\omega_{rev}}rac{\mathrm{d} ilde{arphi}}{\mathrm{d}t}$$

Results: Spin Tune ν_s

Results: Spin Tune ν_s

Results: Spin Tune ν_s

Spin Tune Measurement

- precision of spin tune measurement 10⁻¹⁰ in one cycle (most precise spin tune measurement)
- Compare to muon g 2: $\sigma_{\nu_s} \approx 3 \cdot 10^{-8}$ per year main difference: measurement duration 600μ s compared to 100 s
- spin rotation due to electric dipole moment:

 $\nu_s = \frac{vm\gamma d}{es} = 5 \cdot 10^{-11}$ for $d = 10^{-24} e$ cm (in addition rotations due to *G* and imperfections)

 spin tune measurement can now be used as tool to investigate systematic errors

Spin Tune jumps

Spin Tune for different cycles

JEDI Collaboration

- JEDI = Jülich Electric Dipole Moment Investigations
- \bullet \approx 100 members

(Aachen, Bonn, Daejeon, Dubna, Ferrara, Grenoble, Indiana, Ithaca, Jülich, Krakow, Michigan, Minsk, Novosibirsk, St. Petersburg, Stockholm, Tbilisi, ...)

- \approx 10 PhD students
- close collaboration with srEDM collaboration in US/Korea

http://collaborations.fz-juelich.de/ikp/jedi/index.shtml

Summary & Outlook

- EDMs of elementary particles are of high interest to disentangle various sources of CP violation searched for to explain matter antimatter asymmetry in the Universe
- EDM of charged particles can be measured in storage rings
- Experimentally very challenging because effect is tiny
- First promising results from test measurements at COSY:
 spin coherence time: few hundred seconds
 spin tune: 10⁻¹⁰ in 100 s