Electric Dipole Moment Measurement at Storage Rings

J. Pretz RWTH Aachen & FZ Jülich on behalf of the JEDI & CPEDM collaboration

Freiburg, 15th Patras Workshop, June 2019

Outline

Introduction & Motivation

What are Electric Dipole Moments (EDMs)?, What do we know about EDMs?, Why are EDMs interesting?

Experimental Methods

How to measure charged particle EDMs?

• First Test Measurements (also on axion searches)

Introduction & Motivation

Electric Dipole Moments (EDM)

- permanent separation of positive and negative charge
- fundamental property of particles (like magnetic moment, mass, charge)
- existence of EDM only possible via violation of time reversal \$\mathcal{T}^{CPT} \overline{CP}\$ and parity \$\mathcal{P}\$ symmetry
- has nothing to do with electric dipole moments observed in some molecules (e.g. water molecule)
- close connection to "matter-antimatter" asymmetry
- axion/ALP field leads to oscillating EDM

$\mathcal{CP}-\text{Violation}$ & connection to EDMs

Standard Model			
Weak interaction			
CKM matrix	ightarrow unobservably small EDMs		
Strong interaction			
θ_{QCD}	ightarrow best limit from neutron EDM		
beyond Standard Model			
e.g. SUSY	\rightarrow accessible by EDM measurements		

EDM in SM and SUSY

EDM in SM and SUSY

EDM in SM and SUSY

EDM: Current Upper Limits

storage rings: EDMs of **charged** hadrons: $p, d, {}^{3}$ He

Experimental Method

Experimental Method: Generic Idea

For **all** EDM experiments (neutron, proton, atoms, ...): Interaction of \vec{d} with electric field \vec{E}

For charged particles: apply electric field in a storage ring:

build-up of vertical polarization $s_{\perp} \propto d$, if $\vec{s}_{horz} || \vec{p}$ (frozen spin)

Experimental Method: Generic Idea

For **all** EDM experiments (neutron, proton, atoms, ...): Interaction of \vec{d} with electric field \vec{E}

For charged particles: apply electric field in a storage ring:

build-up of vertical polarization $s_{\perp} \propto d$, if $\vec{s}_{horz} || \vec{p}$ (frozen spin)

Spin Precession: Thomas-BMT Equation

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$$
$$\underbrace{= \vec{\Omega}_{\text{MDM}}}_{= \vec{\Omega}_{\text{EDM}}}$$

electric dipole moment (EDM):
$$ec{d}=\etarac{q\hbar}{2mc}ec{s}$$
 ,
magnetic dipole moment (MDM): $ec{\mu}=2(G+1)rac{q\hbar}{2m}ec{s}$

Note: $\eta = 2 \cdot 10^{-15}$ for $d = 10^{-29} e$ cm, $G \approx 1.79$ for protons axion leads to oscillating EDM: $\eta = \eta_0 + \eta_1 \sin(m_a t + \varphi_a)$

Spin Precession: Thomas-BMT Equation

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$$
$$\vec{\Omega}_{\text{MDM}} = 0, \quad \text{frozen spin}$$

achievable with pure electric field if $G = \frac{1}{\gamma^2 - 1}$, works only for G > 0, e.g. proton or with special combination of *E*, *B* fields and γ , i.e. momentum

Momentum and ring radius for proton in frozen spin condition

Momentum and ring radius for proton in frozen spin condition

Different Options

		\odot	
	1.) pure magnetic ring	existing (upgraded) COSY	lower sensitivity,
		ring can be used,	precession due to G,
		shorter time scale	i.e. no frozen spin
time	2.) combined ring	works for $p, d, {}^{3}He$,	both \vec{E} and \vec{B}
		smaller ring radius	B field reversal for \circlearrowright , \circlearrowright
			required
	3.) pure electric ring	no \vec{B} field needed,	works only for particles
		$\circlearrowright, \circlearrowright$ beams simultaneously	with <i>G</i> > 0 (e.g. <i>p</i>)
-			

Document submitted to ESPP in Dec. 2018 (arXiv:1812.08535, CERN yellow report CERN-PBC-REPORT-2019-002 in preparation)

Statistical Sensitivity

beam intensity	$N = 4 \cdot 10^{10}$ per fill
polarization	P = 0.8
spin coherence time	au= 1000 s
electric fields	E = 8 MV/m
polarimeter analyzing power	A = 0.6
polarimeter efficiency	f = 0.005

$$\sigma_{\text{stat}} \approx \frac{2\hbar}{\sqrt{Nf}\tau PAE} \Rightarrow \sigma_{\text{stat}}(1\text{year}) = 2.4 \cdot 10^{-29} \, e \cdot \text{cm}$$

challenge: get σ_{sys} to the same level

Systematic Sensitivity

observable:
$$\Omega_{\rm EDM} = \frac{dE}{s\hbar} = 2.4 \cdot 10^{-9} \, {\rm s}^{-1}$$
 for $d = 10^{-29} e \, {\rm cm}$

• radial *B*-field of
$$B_r = 10^{-17}$$
 T:
 $\Omega_{B_r} = \frac{eGB_r}{m} = 1.7 \cdot 10^{-9} \text{ s}^{-1}$
• geometric Phases (non-commutation of rotations), $B_{\text{long}}, B_{\text{vert}} \approx 1$ nT
 $\Omega_{\text{GP}} = \left(\frac{eGB}{16m}\right)^2 \frac{1}{f_{\text{rev}}} \approx 3.7 \cdot 10^{-9} \text{ s}^{-1}$
• ...

Remedy:

 Ω_{GP} drops out in sum, $\Omega_{CW} + \Omega_{CCW}$, effect of B_r can be subtracted by observing displacement of the two beams.

Experimental Results

Test Measurements at COSY

Recent achievements

- Spin coherence time: τ > 1000 s (PRL 117, 054801 (2016))
 Spin tune: ν_s = -0.16097 ··· ± 10⁻¹⁰ in 100 s (PRL 115, 094801 (2015))
- Spin feedback: polarisation vector kept within 12 degrees (PRL 119 (2017) no.1, 014801)

(all data shown were taken with deuterons, with $p \approx 1 \text{ GeV}/c$)

mandatory to reach statistical sensitivity
 & 3 shows that we can measure and manipulate polarisation vector with high accuracy

Spin Precession

Axion Search at COSY

• if axion frequency (mass) equals $f_{spin} = \gamma G f_{rev}$ \Rightarrow resonance, vertical polarisation build-up observed

Axion Search at COSY

 problem: d ∝ η₀ + η₁ sin(m_at + φ_a), φ_a not known resonance only if phase relation between beam pol. and axion field "correct" solution: store at least two bunches with orthogonal polarisation

Axion Search at COSY

• test measurements performed with deuterons p = 0.970 GeV/c $f_{spin} \approx \gamma G f_{rev} \approx 120 \text{kHz}$ frequency range -1% to +0.5% around 120 kHz

S. P. Chang, S. Haciomeroglu, O. Kim, S. Lee, S. Park and Y. K. Semertzidis, Phys. Rev. D 99 (2019) no.8, 083002

• axion measurement much less sensitive to systematic effect than permanent EDM, (spin resonance would act the same way on every bunch)

Summary

- EDMs are unique probe to search for new CP-violating interactions
- axions/ALP lead to oscillating EDMs
- charged particle EDMs can be measured in storage rings
- proof of principle measurement performed at COSY/Forschungszentrum Jülich

European Research Council

Spare

${\mathcal T}$ and ${\mathcal P}$ violation of EDM

<mark>ḋ</mark>: EDM

 $\vec{\mu}$: magnetic moment (MDM) both || to spin \vec{s}

 \Rightarrow EDM measurement tests violation of fundamental symmetries \mathcal{P} and $\mathcal{T}(\stackrel{\mathcal{CPT}}{=} \mathcal{CP})$

EDM activities around the world

Momentum and ring radius for deuteron in frozen spin condition

Why Charged Particle EDMs?

J. de Vries