Charged Particle Electric Dipole Moment Searches in Storage Rings

J. Pretz RWTH Aachen & FZ Jülich for the JEDI collaboration

Axions and the Low Energy Frontier, Bonn, März 2016

Outline

• Introduction: Electric Dipole Moments (EDMs):

What is it? Why is it interesting? What do we know about EDMs?

• Experimental Method:

How to measure charged particle EDMs?

Recent Achievements:

Spin- Coherence Time Tune Feedback Tracking

What is it?

Electric Dipoles

Order of magnitude

	atomic physics	hadron physics
charges	е	
$ \vec{r}_1 - \vec{r}_2 $	1 Å= 10 ⁻⁸ cm	
EDM		
naive expectation	10 ^{−8} <i>e</i> · cm	
observed	water molecule	
	2 · 10 ^{−8} <i>e</i> · cm	

Order of magnitude

	atomic physics	hadron physics
charges	е	е
$ \vec{r}_1 - \vec{r}_2 $	1 Å= 10 ⁻⁸ cm	$1 \mathrm{fm} = 10^{-13} \mathrm{cm}$
EDM		
naive expectation	10 ^{−8} <i>e</i> · cm	$10^{-13} e \cdot cm$
observed	water molecule	neutron
	2 · 10 ^{−8} <i>e</i> · cm	$< 3 \cdot 10^{-26} e$ · cm

Neutron EDM

neutron EDM of $d_n = 3 \cdot 10^{-26} e$ cm corresponds to separation of u- from d-quarks of $\approx 5 \cdot 10^{-26}$ cm

Operator $\vec{d} = q\vec{r}$

is odd under parity transformation $(\vec{r} \rightarrow -\vec{r})$:

 $\mathcal{P}^{-1}\vec{d}\mathcal{P}=-\vec{d}$

Consequences: In a state $|a\rangle$ of given parity the expectation value is 0:

$$\langle a | \vec{d} | a \rangle = - \langle a | \vec{d} | a \rangle$$

but if $| a \rangle = \alpha | P = + \rangle + \beta | P = - \rangle$
in general $\langle a | \vec{d} | a \rangle \neq 0 \Rightarrow$ i.e. molecules

EDM of molecules

ground state: mixture of $\Psi_s = \frac{1}{\sqrt{2}} (\Psi_1 + \Psi_2), P = +$ $\Psi_a = \frac{1}{\sqrt{2}} (\Psi_1 - \Psi_2), P = -$

EDMs & symmetry breaking

Molecules can have large EDM because of degenerated ground states with different parity

EDMs & symmetry breaking

Molecules can have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite parity and cannot posses an EDM $P|had >= \pm 1|had >$

EDMs & symmetry breaking

Molecules can have large EDM because of degenerated ground states with different parity

Elementary particles (including hadrons) have a definite parity and cannot posses an EDM $P|had >= \pm 1|had >$

unless

 ${\cal P}$ and time reversal ${\cal T}$ invariance are violated!

${\mathcal T}$ and ${\mathcal P}$ violation of EDM

 $\Rightarrow \mathsf{EDM} \text{ measurement tests violation of fundamental symmetries } \mathcal{P} \text{ and } \mathcal{T}(\stackrel{\mathcal{CPT}}{=} \mathcal{CP})$

Symmetry (Violations) in Standard Model

	electro-mag.	weak	strong
${\mathcal C}$	\checkmark	ź	\checkmark
${\cal P}$	\checkmark	ź	(√)
$\mathcal{T} \stackrel{\textit{CPT}}{\rightarrow} \mathcal{CP}$	\checkmark	()	(√)

- *C* and *P* are maximally violated in weak interactions (Lee, Yang, Wu)
- *CP* violation discovered in kaon decays (Cronin,Fitch) described by CKM-matrix in Standard Model
- CP violation allowed in strong interaction but corresponding parameter $\theta_{QCD} \lesssim 10^{-10}$ (strong CP-problem)

Sources of $\mathcal{CP}-Violation$

and connection to EDMs

Standard Model		
Weak interaction		
CKM matrix	ightarrow unobservably small EDMs	
Strong interaction		
$ heta_{QCD}$	ightarrow best limit from neutron EDM	
beyond Standard Model		
e.g. SUSY	\rightarrow accessible by EDM measurements	

Why is it interesting?

Matter-Antimatter Asymmetry

Excess of matter in the universe:

	observed	SM prediction
$\eta = \frac{n_B - n_{\bar{B}}}{n_{\gamma}}$	$6 imes 10^{-10}$	10 ⁻¹⁸

Sakharov (1967): \mathcal{CP} violation needed for baryogenesis

 \Rightarrow New \mathcal{CP} violating sources beyond SM needed to explain this discrepancy

They could manifest in EDMs of elementary particles

What do we know about EDMs?

EDM: Current Upper Limits

EDM: Current Upper Limits

FZ Jülich: EDMs of **charged** hadrons: *p*, *d*, ³He

Why Charged Particle EDMs?

- no direct measurements for charged hadrons exist
- potentially higher sensitivity (compared to neutrons):
 - longer life time,
 - more stored protons/deuterons
- complementary to neutron EDM:

 $d_d \stackrel{?}{=} d_p + d_n \Rightarrow \text{access to } \theta_{QCD}$

• EDM of one particle alone not sufficient to identify *CP*-violating source

Sources of \mathcal{CP} Violation

J. de Vries

How to measure charged particle EDMs?

Experimental Method: Generic Idea

For **all** EDM experiments (neutron, proton, atoms, ...): Interaction of \vec{d} with electric field \vec{E} For charged particles: apply electric field in a storage ring:

build-up of vertical polarization $s_{\perp} \propto |d|$

Experimental Requirements

- high precision storage ring → systematics (alignment, stability, field homogeneity)
- high intensity beams ($N = 4 \cdot 10^{10}$ per fill)
- polarized hadron beams (P = 0.8)
- long spin coherence time ($\tau = 1000 \text{ s}$),
- large electric fields (E = 10 MV/m)
- polarimetry (analyzing power A = 0.6, acc. f = 0.005)

$$\sigma_{\text{stat}} \approx \frac{1}{\sqrt{Nt}\tau PAE} \Rightarrow \sigma_{\text{stat}}(1\text{year}) = 10^{-29} \, e \cdot \text{cm}$$

challenge: get σ_{sys} to the same level

Systematics

Major source: Radial *B* field mimics an EDM effect:

- Difficulty: even small radial magnetic field, *B_r* can mimic EDM effect if :μ*B_r* ≈ *dE_r*
- Suppose $d = 10^{-29} e cm$ in a field of $E_r = 10 MV/m$

• This corresponds to a magnetic field:

$$B_r = rac{dE_r}{\mu_N} = rac{10^{-22} eV}{3.1 \cdot 10^{-8} eV/T} pprox 3 \cdot 10^{-17} T$$

Solution: Use two beams running clockwise and counter clockwise, separation of the two beams is sensitive to B_r

Systematics

Sensitivity needed: $1.25 \text{ fT}/\sqrt{\text{Hz}}$ for $d = 10^{-29} e \text{ cm}$ (possible with SQUID technology)

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E} + \frac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

Ω: angular precession frequency *d*: electric dipole moment *G*: anomalous magnetic moment γ: Lorentz factor

BMT: Bargmann, Michel, Telegdi

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m}[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} + \frac{m}{es}d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

Ω: angular precession frequency *d*: electric dipole moment *G*: anomalous magnetic moment γ: Lorentz factor

dedicated ring: pure electric field, freeze horizontal spin motion $\left(G - \frac{1}{\gamma^2 - 1}\right) \stackrel{!}{=} 0$ only possible if G > 0 (i.e. protons)

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} + \frac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

Ω: angular precession frequency *d*: electric dipole moment *G*: anomalous magnetic moment γ: Lorentz factor

dedicated ring: pure electric field, freeze horizontal spin motion $\left(G - \frac{1}{\gamma^2 - 1}\right) \stackrel{!}{=} 0$ only possible if G > 0 (i.e. protons)

> combined E/B ring $G\vec{B} + (G - \frac{1}{\gamma^2 - 1})\vec{v} \times \vec{E} \stackrel{!}{=} 0$

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} + \frac{m}{es} d[\vec{E} + \vec{v} \times \vec{B}]] \times \vec{s}$$

- Ω: angular precession frequency *d*: electric dipole moment *G*: anomalous magnetic moment γ: Lorentz factor
- **COSY:** pure magnetic ring access to EDM via motional electric field $\vec{v} \times \vec{B}$, requires additional radio-frequency *E* and *B* fields to suppress $G\vec{B}$ contribution

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} + \frac{m}{es} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

- Ω: angular precession frequency *d*: electric dipole moment *G*: anomalous magnetic moment γ: Lorentz factor
- **COSY:** pure magnetic ring access to EDM via motional electric field $\vec{v} \times \vec{B}$, requires additional radio-frequency *E* and *B* fields to suppress $G\vec{B}$ contribution

neglecting EDM term spin tune: $\nu_{s} \approx \frac{|\vec{\Omega}|}{|\omega_{\text{cyc}}|} = \gamma G$, $(\vec{\omega}_{cyc} = \frac{e}{\gamma m} \vec{B})$

Summary of different options

	\odot	\odot
1.) pure magnetic ring	existing (upgraded) COSY ring can be used , shorter time scale	lower sensitivity
2.) pure electric ring	no \vec{B} field needed	works only for p
3.) combined ring	works for $p, d, {}^{3}\text{He}, \dots$	both <i>Ē</i> and <i>B</i> required

Ring Design with E/B elements

 $|\vec{B}| = 0.46$ T, $|\vec{E}| = 12$ MV/m Y. Senichev

Results of first test measurements
Cooler Synchrotron COSY

COSY provides (polarized) protons and deuterons with p = 0.3 - 3.7 GeV/c \Rightarrow Ideal starting point for charged particle EDM searches

R & D at COSY

- maximize spin coherence time (SCT)
- precise measurement of spin precession (spin tune)
- spin feed back
- spin tracking simulation tools
- rf- Wien filter design and construction
- tests of electro static deflectors (goal: field strength > 10 MV/m)
- development of high precision beam position monitors
- polarimeter development

Experimental Setup

• Inject and accelerate vertically polarized deuterons to $p \approx 1 \text{ GeV}/c$

Experimental Setup

- Inject and accelerate vertically polarized deuterons to $p \approx 1 \text{ GeV}/c$
- flip spin with help of solenoid into horizontal plane

Experimental Setup

- Inject and accelerate vertically polarized deuterons to $p \approx 1 \text{ GeV}/c$
- flip spin with help of solenoid into horizontal plane
- Extract beam slowly (in 100 s) on target
- Measure asymmetry and determine spin precession

Asymmetry Measurements

• Detector signal
$$N^{up,dn} \propto (1 \pm PA \sin(\gamma G\omega_{rev} t))$$

 $A_{up,dn} = \frac{N^{up} - N^{dn}}{N^{up} + N^{dn}} = PA \sin(\gamma G\omega_{rev} t)$

A: analyzing power, P : polarization

Polarimetry

Cross Section & Analyzing Power for deuterons

 $N_{up,dn} \propto (1 \pm PA \sin(
u_s \omega_{rev} t))$

$$A_{up,dn} = \frac{N^{up} - N^{dn}}{N^{up} + N^{dn}}$$
$$= PA \sin(\nu_s \omega_{rev} t)$$

A : analyzing power P : beam polarization

Polarimeter

elastic deuteron-carbon scattering Up/Down asymmetry \propto horizontal polarization $\rightarrow \nu_s = \gamma G$ Left/Right asymmetry \propto vertical polarization $\rightarrow d$

 $N_{up,dn} \propto 1 \pm PA \sin(\nu_s \omega_{rev} t), \quad f_{rev} pprox 750 \, \mathrm{kHz}$

Up - dn asymmetry Aup, dn

$$A_{up,dn}(t) = AP_0 e^{-t/\tau} \sin(\nu_s \omega_{rev} t + \varphi)$$

• $au
ightarrow {
m spin}$ decoherence

• $\nu_s \rightarrow$ spin tune

time scales: $\nu_s f_{rev} \approx 120 \text{ kHz}$

au in the range 1-1000 s

Polarization Flip

Polarization Flip

Polarization Flip

Results: Spin Coherence Time (SCT)

unbunched beam $\Delta p/p = 10^{-5} \Rightarrow \Delta \gamma/\gamma = 2 \cdot 10^{-6}, T_{rev} \approx 10^{-6} \text{ s}$ \Rightarrow decoherence after < 1 s bunched beam eliminates 1st order effects in $\Delta p/p$ \Rightarrow SCT $\tau = 20 \text{ s}$

Results: Spin Coherence Time (SCT)

SCT of $\tau =$ 400 s, after correction with sextupoles (chromaticities $\xi \approx$ 0)

SCT: Longer Cycles

deuterons: $p_d = 1$ GeV/c ($\gamma = 1.13$), G = -0.14256177(72)

$$\Rightarrow \nu_{s} = \gamma G \approx -0.161$$

Results spin tune

Results spin tune

Results spin tune

- precision 10^{-10} in one cycle of $\approx 100 \, s$ (translated to angle, precision is $2 \cdot \pi \cdot 10^{-10} = 0.6$ nrad)
- spin tune measurement can now be used as tool to investigate systematic errors
- spin tune measurement allows for feedback system to keep polarisation aligned with momentum vector for dedicted ring or at a given phase with respect to radiofrequency Wien filter

Spin Feed back system

 polarisation rotation in horizontal plane at t = 85 s
 COSY rf changed during cycle in stans of 2.7 ml/s

during cycle in steps of 3.7 mHz (f_{rev} =750603 Hz) according to online ν_s measurement to

keep spin precession and solenoid RF constant

- solenoid (low amplitude) switched on at t = 115 s
- polarisation goes back to vertical direction

Simulations

- EDM signal is build-up of vertical polarisation
- radial magnetic fields (*B_r*) cause the same build-up
- misalignments of quadrupoles create for example unwanted B_r
- $\bullet \Rightarrow$ Run simulations to understand systematic effects
- General problem: Track 10⁹ particles for 10⁹ turns!
 (→ use transfer maps of magnet elements (code: COSY Infinity))
- orbit RMS Δy_{RMS} is measure of misalignments

Spin Tracking

JEDI Collaboration

- JEDI = Jülich Electric Dipole Moment Investigations
- \bullet \approx 100 members

(Aachen, Bonn, Daejeon, Dubna, Ferrara, Grenoble, Indiana, Ithaca, Jülich, Krakow, Michigan, Minsk, Novosibirsk, St. Petersburg, Stockholm, Tbilisi, ...)

- \approx 10 PhD students
- close collaboration with srEDM collaboration in US/Korea

http://collaborations.fz-juelich.de/ikp/jedi/index.shtml

Summary & Outlook

- EDMs of elementary particles are of high interest to disentangle various sources of CP violation searched for to explain matter antimatter asymmetry in the Universe
- EDM of **charged** particles can be measured in **storage rings**
- Experimentally very challenging because effect is tiny
- First promising results:

spin coherence time:	few hundred seconds
spin tune:	10 ⁻¹⁰ in 100 s
feed back system	allows to control spin
simulations	to understand systematics

Up - dn asymmetry Aup, dn

Long SCT τ allows now to observe $\nu_s(t) \approx \gamma G$, respectively $\varphi(t)$

$$\begin{array}{lll} \mathsf{A}_{up,dn}(t) &=& \mathsf{A}\mathsf{P}_0 \mathrm{e}^{-t/\tau} \sin(\nu_{\mathsf{s}}(t)\omega_{rev}t + \varphi) \\ &=& \mathsf{A}\mathsf{P}_0 \mathrm{e}^{-t/\tau} \sin(\nu_{\mathsf{s}}^0\omega_{rev}t + \varphi(t)) \end{array}$$

65/87

Spin Tune for different cycles

Spin Tune jumps

Event Distribution

$\text{SCT} \leftrightarrow \text{Chromaticity I}$

Chromaticities vs. tune giving maximal SCT according to simulation

$\textbf{SCT} \leftrightarrow \textbf{Chromaticity II}$

Chromaticities vs. sextupole setting

$\text{SCT} \leftrightarrow \text{Chromaticity I}$

Maximal SCT for predicted sextupole setting

$\textbf{SCT} \leftrightarrow \textbf{chromaticity}$

chromaticity $\xi = \Delta Q / (\Delta p / p)$ $\langle \frac{\Delta T}{T_0} \rangle = \langle \frac{\Delta L}{L_0} \rangle - \langle \frac{\Delta \beta}{\beta_0} \rangle$ $\langle \ldots \rangle$ means time average for one particle because of bunched beam: $\langle \frac{\Delta T}{\tau_{a}} \rangle = 0$ betatron oscillations leads to $\langle \frac{\Delta L}{L} \rangle \neq 0$ $\Rightarrow \frac{\Delta\beta}{\beta_0} \neq 0 \Rightarrow \frac{\Delta\nu_s}{\nu_s} \neq 0$ sextupole settings gives access to $\left\langle \frac{\Delta L}{L_0} \right\rangle = \frac{\pi}{L_0} \epsilon_{\mathbf{X},\mathbf{y}} \xi_{\mathbf{X},\mathbf{y}}$
Spin Tune as tool to investigate systematics

- Create artificial imperfections with solenoids/steerers
- measure spin tune change Δν_s
- expectation $\Delta \nu_s \propto (y_{\pm} - a_{\pm})^2$ a_{\pm} : kicks due to imperfections, y_{\pm} : kicks due to solenoids

parabolic behavior expected from simulations
 y[±] = (\frac{\chi_1 \pm \chi_2}{2}, \chi_{1,2}) : solenoid strength for perfect machine, minimum should be at y⁺ = 0

parabolic behavior expected from simulations
 y[±] = (\frac{\chi_1 ± \chi_2}{2}, \chi_{1,2}) : solenoid strength for perfect machine, minimum should be at y⁺ = 0

Electron and Neutron EDM

J. M. Pendlebury & E.A. Hinds, NIMA 440(2000) 471

EDM: SUSY Limits

electron: MSSM: $\varphi \approx 1 \Rightarrow d = 10^{-24} - 10^{-27} e \cdot cm$ $\varphi \approx \alpha/\pi \Rightarrow d = 10^{-26} - 10^{-30} e \cdot cm$

neutron: MSSM: $d = 10^{-24} e \cdot \text{cm} \cdot \sin \phi_{CP} \frac{200 \text{GeV}}{M_{SUSY}}$

SM EDM values

$$\mu_n = \frac{e}{2m_p} \approx 10^{-14} e \text{cm} \text{ (CP \& P conserving)}$$

$$d_n = 10^{-14} \times \underbrace{10^{-7}}_{P-\text{violation}} \times \underbrace{10^{-3}}_{CP-\text{violation}} \times \underbrace{G_F F_\pi}_{\text{no flavor change}} = 10^{-31} e \text{cm}$$

$$d_n = \mathcal{O}(g_w^4 g_s^2) = \mathcal{O}(G_F^2 g_s^2) \quad (3loop)$$

$$d_e = \mathcal{O}(g_w^6 g_s^2) = \mathcal{O}(G_F^2 g_s^2) \quad (4loop)$$

Electrostatic Deflectors

- Electrostatic deflectors from Fermilab (\pm 125kV at 5 cm $\hat{=}$ 5MV/m)
- large-grain Nb at plate separation of a few cm yields \approx 20MV/m

Wien Filter

Conventional design R. Gebel, S. Mey (FZ Jülich)

stripline design D. Hölscher, J. Slim (IHF RWTH Aachen)

Pure Magnetic Ring

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} \left(G\vec{B} + \frac{m}{es} d\vec{v} \times \vec{B} \right) \times \vec{s}$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

 E^* field in the particle rest frame tilts spin due to EDM up and down \Rightarrow **no net EDM effect**

Pure Magnetic Ring

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{e}{m} \left(G\vec{B} + \frac{m}{es} d\vec{v} \times \vec{B} \right) \times \vec{s}$$

Problem:

Due to precession caused by magnetic moment, 50% of time longitudinal polarization component is || to momentum, 50% of the time it is anti-||.

 E^* field in the particle rest frame tilts spin due to EDM up and down \Rightarrow **no net EDM effect**

Use resonant "magic Wien-Filter" in ring $(\vec{E}_W + \vec{v} \times \vec{B}_W = 0)$:

 $E_W^* = 0 \rightarrow \text{part.}$ trajectory is not affected but

 $B^*_W \neq 0 \rightarrow$ mag. mom. is influenced

 \Rightarrow net EDM effect can be observed!

Spin Precession: Thomas-BMT Equation

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{\mathrm{e}}{m} [G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E} + \frac{m}{\mathrm{e}s} d(\vec{E} + \vec{v} \times \vec{B})] \times \vec{s}$$

Ω: angular precession frequency d: electric dipole momentG: anomalous magnetic moment γ: Lorentz factor

COSY: pure magnetic ring access to EDM via motional electric field $\vec{v} \times \vec{B}$, requires additional radio-frequency *E* and *B* fields to suppress $G\vec{B}$ contribution

> neglecting EDM term spin tune: $\nu_{s} \approx \frac{|\vec{\Omega}|}{|\omega_{\text{cyc}}|} = \gamma G$, $(\vec{\omega}_{cyc} = \frac{e}{\gamma m} \vec{B})$

2. Pure Electric Ring

Figure 3: An all-electric storage ring lattice for measuring the electric dipole moment of the proton. Except for having longer straight sections and separated beam channels, the all-in-one lattice of Fig. 1 is patterned after this lattice. Quadrupole and sextupole families, and tunes and lattice functions of the allin-one lattice of Fig. 1 will be quite close to those given for this lattice in reference[3]. The match will be even closer with magnetic field set to zero for proton operation.

Brookhaven National Laboratory (BNL) Proposal

3. Combined \vec{E}/\vec{B} ring

Figure 1: "All-In-One" lattice for measuring EDM's of protons, deuterons, and helions.

Under discussion at Forschungszentrum Jülich (design: R. Talman)

EDM Activities Around the World

K. Kirch

Systematics

• Splitting of beams:
$$\delta y = \pm \frac{\beta c R_0 B_r}{E_r Q_y^2} = \pm 1 \cdot 10^{-12} \text{ m}$$

- $Q_y \approx 0.1$: vertical tune
- Modulate $Q_y = Q_y^0 (1 m\cos(\omega_m t)), \ m \approx 0.1$
- Splitting causes *B* field of $\approx 0.4 \cdot 10^{-3}$ fT
- in one year: 10⁴ fills of 1000 s ⇒ σ_B = 0.4 · 10⁻¹ fT per fill needed
- Need sensitivity $1.25 \, \text{fT} / \sqrt{\text{Hz}}$