Polarimetry Concept Based on Heavy Crystal Hadron Calorimeter

for the JEDI Collaboration | CALOR 2016 |
- Introduction
- JEDI Polarimetry Concept
- MC Simulations
- Laboratory and Beam Tests
- Outlook
- Summary
Introduction
EDM – Electric Dipole Moment

JEDI – Jülich Electric Dipole moment Investigation

Collaboration members: 122

Baryogenesis

Standard Model
- not enough CP violation

nEDM

May 17, 2016
Irakli Keshelashvili
Why Storage Ring?
Measuring EDM for Charged Pericles

- Store polarized deuterons (COSY)
- Interact with an E-field (Wien-Filter)
- **Analyze Polarization Build-up (this talk)**

\[
\frac{d \mathbf{s}}{dt} = \mathbf{d} \times \mathbf{E} + \mathbf{d} \times (\mathbf{v} \times \mathbf{B})
\]
COSY (COoler SYnchrotron)

at Forschungszentrum Jülich (Germany)

- Energy range:
 - $0.045 - 2.8$ GeV (p)
 - $0.023 - 2.3$ GeV (d)
- Max. momentum ~ 3.7 GeV/c
- Electron and Stochastic cooling
- Internal and external beams
- High polarisation (p,d)
- Spin manipulation !!!
srEDM – *Precision Experiment*

complementary

LHC – Energy Frontier

➢ Reaction with Large A_y : Best $dC \rightarrow dC$!!

➢ Maximum Detection & Data Taking Efficiency !!

➢ Full ϕ in Reasonable FOM(θ) region !!

➢ No Magnetic / Electric Field !!

➢ Stability – Long / Short Term !!!
\[\vec{d}C \rightarrow dC \] Elastic Scattering @ 270 MeV

\[FOM = A_y^2 \cdot \sigma \]
JEDI Polarimetry Concept
Optimized for $\bar{d}C \rightarrow dC$ Reaction

Diagram:
- **COSY beam**
- **Target chamber**
- **Vacuum pipe**
- **C-block**
- **Ballistic diamond pellet target**
- **BPM**
- **LYSO HCAL**
- **PMT**

May 17, 2016
Irakli Keshelashvili
JEDI Collaboration
LYSO Based Polarimeter

Modular Setup / Easy Splitting

- Two layer, 2x36 segment dE/E plastic scintillators
- Vacuum flight chamber
- Carbon target chamber
- LYSO modules 30x30x80mm
- Rogowski coils; Beam position monitors
FADC Based DAQ

~ 100 % Data Taking Efficiency

Struck SIS 3316
14 bit resol. -2V to +2V
16 channel – 64MS/ch
250MS/s – 4ns per S.

Pile-Up

May 17, 2016 Irakli Keshelashvili JEDI Collaboration 10 / 22
LYSO Modules
First and Second Generation

\[n = \sqrt{n_1 \cdot n_2} = 1.66 \]

Mechanical Holding
Magnetic Shielding
ST-37

LYSO Crystal
30x30x100mm
\(n_1 = 1.82 \)

Aluminum Housing

SensL C / J
6x6 mm Sensor
35um Pixel
2x2 Array

LYSO Crystal
30x30x80mm
\(n_1 = 1.82 \)
LYSO Module
Assembly and Mechanical Stability

May 17, 2016 Irakli Keshelashvili JEDI Collaboration 12 / 22
LYSO Crystal Wrapping and Homogeneity Test

50μm Teflon

270 MeV deuteron beam

Double Layer Teflon

Laser reflection

50μm Tedlar

Amplitude

Horizontal Position

May 17, 2016
Irakli Keshelashvili
JEDI Collaboration
LYSO (176Lu) + 60Co Tests

8 % Resolution at 2.5 MeV Photons

1170keV

1330keV

2500keV
G4: Elastic $dC \rightarrow dC$ Scattering

Very Clear Signature

<table>
<thead>
<tr>
<th>elastic_theta_Ek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries 24583</td>
</tr>
<tr>
<td>Mean x 8.731</td>
</tr>
<tr>
<td>Mean y 268.1</td>
</tr>
<tr>
<td>RMS x 6.864</td>
</tr>
<tr>
<td>RMS y 3.038</td>
</tr>
</tbody>
</table>

May 17, 2016 Irakli Keshelashvili JEDI Collaboration
G4: Inelastic $dC \rightarrow X$ Simulation

Far Below Elastic E-Spectrum
Prototype Test – BIG KARL Area

External Proton and Deuteron Beam

a) Front view
 LYSO crystal
 optical properties
 comparison w. Lithrani

b) Top view
 Bragg peak scan.
 dE/dx characterization

c) Top view
 Absorption length determination

May 17, 2016
Irakli Keshelashvili
JEDI Collaboration
Prototype Test – BIG KARL Area
External Proton and Deuteron Beam
Time Resolution
Cosmic and External Beam

- Time Resolution with 250 MS/s Far Below 1 ns
- QDC Energy Resolution at 200 MeV roughly 4 %
- Deuteron Reconstruction Efficiency at 80 % (Threshold 90 %)
Prototype Characterization

Using External Beam

- Incident vs Reconstructed $d - T_{\text{kin}}$
- Reconstructed Energy Resolution vs Incident $d - T_{\text{kin}}$
- Deuteron Identification Efficiency
- Bragg Peak, Absorption λ, Radiation Hardness

\[\frac{\Delta E}{E} = \frac{p_0}{E} \oplus \frac{p_1}{E} \oplus p_2 \]

\[
\chi^2 / \text{ndf} = 43.35 / 2
p_0 = 0 \pm 0
p_1 = 0.6649 \pm 0.01297
p_2 = 0.0001226 \pm 5.541e-05
\]

\[
\chi^2 / \text{ndf} = 0.05017 / 2
p_0 = 212.1 \pm 47.99
p_1 = 25.44 \pm 2.955
p_2 = 0 \pm 68.18
\]

\[
\epsilon = A_E e^{\lambda \cdot E}
\]

\[
\chi^2 / \text{ndf} = 1.319 / 3
\text{Constant} = 4.687 \pm 0.01191
\text{Slope} = -0.001888 \pm 6.363e-05
\]

May 17, 2016
Irakli Keshelashvili
JEDI Collaboration
Next with 2x10 LYSO Modules
Polarized Deuteron Beam / 6 Different Targets
Summary

- Direct shot of protons and deuterons on LYSO
 Unpolarized deuteron and proton of: 100, 150, 200, 235, 270 MeV

- LYSO module development and mechanical construction:
 LYSO (2 types), PMT (2 types) and SiPM/MPPC (KETEK, SensL)

- 2 (+2) LYSO crystals will be tested:
 Saint–Gobain (EU) 2x(30x30x100 mm)
 EPIC–Crystals (China) 1x(30x30x100 mm)
 Saint–Gobain 2x(15x30x100 mm)

- 2x 10x LYSO modules in readout with polarized deuterons
 Analyzing power / FOM comparison of different targets
Cosmic Signal vs Intrinsic Radiation

![Graph showing cosmic signal and intrinsic radiation with Amplitude [V] from 1 to -0.8, and TIME [s] from 0.05 to 0.15.]

Intrinsic radiation:
-740 mV
30 MeV
50 ns

-Cosmic Signal:
-40 mV

LeCroy

Timebase -152 ns
Trigger C1 DC
20.0 mV/div
50.0 ns/div
60.00 mV ofst
1.00 kS
Edge Negative

May 17, 2016 Irakli Keshelashvili JEDI Collaboration
EDDA@COSY Targets
Optimized for $\bar{d}C \rightarrow dC$ Reaction

White Noise
C-block target

C-wire target
New Idea!

COSY beam

Target chamber

Vacuum pipe

exit window

Carbon

v=10m/s
t= 1ms

1cm
JEDI Polarimetry Concept

Variable Effective Target Thickness

May 17, 2016
Irakli Keshelashvili
JEDI Collaboration
Cosmic Calibration
K. Nowakowski, C. Dziwok

<table>
<thead>
<tr>
<th>hCo-60</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
<td>66000</td>
</tr>
<tr>
<td>Mean</td>
<td>2043</td>
</tr>
<tr>
<td>RMS</td>
<td>980.8</td>
</tr>
<tr>
<td>χ^2/ndf</td>
<td>103.5 / 87</td>
</tr>
<tr>
<td>Constant</td>
<td>241.8 ± 2.5</td>
</tr>
<tr>
<td>Mean</td>
<td>2808 ± 4.8</td>
</tr>
<tr>
<td>Sigma</td>
<td>356.1 ± 9.0</td>
</tr>
</tbody>
</table>

23.6%
G4: Cosmic Simulation

P. Maanen, LYSO 30x30x100 mm with 0°, 45°, 90°

May 17, 2016 Irakli Keshelashvili JEDI Collaboration