

MEASUREMENT OF ELECTRIC DIPOLE MOMENTS AT STORAGE RINGS

VOLKER HEJNY, INSTITUT FÜR KERNPHYSIK

FORSCHUNGSZENTRUM JÜLICH

Mitglied der Helmholtz-Gemeinschaft

Why are we here?

Outline

- Electric Dipole Moments
 - What are those?
 - How can they help?
- EDM measurements using storage rings
 - Basic principles
 - Options
- R&D and first measurements at COSY

Further information:

http://collaborations.fz-juelich.de/ikp/jedi

Electric Dipole Moments (EDM)

EDMs of elementary particles

- *š* spin
- \vec{d} electric dipole moment
- $\vec{\mu}$ magnetic moment

Transformations w.r.t. \mathcal{P}, \mathcal{T}

$$H = -\mu\vec{\sigma}\cdot\vec{B} - d\vec{\sigma}\cdot\vec{E}$$

- $\mathcal{P}: \quad H = -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{E}$
- $\mathcal{T}: \quad H = -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{E}$

ŝμ Ρ đ

EDM measurements test violation of fundamental symmetries \mathcal{P} , \mathcal{T} and $C\mathcal{P}$ (via $C\mathcal{PT}$)

So what is the difference?

elementary particle

EDM violates \mathcal{P} , \mathcal{T}

water molecule

EDM allowed

How can that help?

Reminder: excess of matter in the universe

	Standard Modell	Observed
$rac{n_B-n_{ar B}}{n_{\gamma}}$	$\approx 10^{-18}$	6×10^{-10}

Sakharov (1967): CP violation needed for baryogenesis

Sources of CP violation

Standard Model			
weak interaction	CKM matrix	unobservably small EDMs	
strong interaction	$ heta_{QCD}$	best limit from neutron EDM $(\lesssim 10^{-10})$ "strong CP problem"	
beyond Standard Model			
e.g. SUSY	?	accessible by EDM measurements	

Different sources of CP violation result in a different EDM for different particle types

Disentangling CP violation ...

Forschungszentrum

Current EDM limits

Here: EDMs of charged particles

How to measure EDMs?

Common strategy for all EDM measurements:

 \rightarrow measure interaction of \vec{d} with electric field \vec{E}

 \rightarrow precession

For charged particles:

https://www.youtube.com/watch?v=qwM4ensIA_k by Tales Of a Musing Gator

How to measure EDMs of charged particles?

Electric field accelerates particles

 \rightarrow use a storage ring

Ideal case:

"Ad-hoc" boundary conditions

Very slow spin precession	Long measurement times ($t \approx 1000$ s) High electric fields ($E \approx 10$ MV/m) High degree of polarization ($P \approx 0.8$) Precise polarisation measurement (analysing power $A \approx 0.6$, acc. $f \approx$ 0.005)	
Particle ensemble ($N \approx 4 \times 10^{10}$ per fill)	All particles must act identically All spins need to be aligned ("spin coherence time")	
In-plane polarisation momentum	Control spin motion at high precision	
Magnetic moment causes fake rotations	High field quality Magnetic shielding Precise geometrical alignment Fringe fields under control	
$\sigma_{\text{stat}} \approx \frac{1}{\sqrt{Nf}\tau PAE} \implies \sigma_{\text{stat}}(1 \text{ year}) \approx 1$	Major challenge: get systematic uncertainties to the same level!	

Spin motion

Thomas-BMT equation:

magnetic moment

$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = -\frac{q}{m_0} \left\{ G\vec{B} - \frac{\gamma G}{\gamma + 1} \vec{\beta} (\vec{\beta} \cdot \vec{B}) + \left(\frac{1}{\gamma^2 - 1} - G\right) \frac{\vec{\beta} \times \vec{E}}{c} + d \frac{m_0}{q\hbar S} \left(\vec{E} - \frac{\gamma}{(\gamma + 1)} \vec{\beta} (\vec{\beta} \cdot \vec{B}) + c \vec{\beta} \times \vec{B} \right) \right\} \times \vec{S}$$
EDM

- Ω : angular precession frequency
- G: anomalous magnetic moment

- *d*: electric dipole moment
- γ : Lorentz factor

Storage rings: \vec{B} vertical, \vec{E} radial

Storage rings: general case

magnetic moment causes fast spin precession: $\vec{s}_H \not\parallel \vec{p}$

- Ω : angular precession frequency
- G: anomalous magnetic moment
- *d*: electric dipole moment
- γ : Lorentz factor

Storage rings: electric ring

"frozen spin" : precession vanishes at magic momentum

$$G = \frac{1}{\gamma^2 - 1} \Longrightarrow p = \frac{m}{\sqrt{G}}$$

only possible for G > 0

Dedicated ring for protons

Storage rings: combined ring

"frozen spin": proper combination of \vec{B} , \vec{E} and γ also for G < 0 (i.e. deuterons, ³He)

All-in-one ring for protons, deuterons, ³He

Storage rings: magnetic ring

 $\begin{array}{l} \text{magnetic moment} & \text{EDM} \\ \\ \frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = -\frac{q}{m_0} \Biggl\{ G\vec{B} + \left(\frac{1}{\gamma^2 - 1} - G\right) \frac{\vec{\beta} \times \vec{E}}{c} + d\frac{m_0}{q\hbar S} \left(\vec{E} + c\vec{\beta} \times \vec{B}\right) \Biggr\} \times \vec{S} \end{array}$

COSY: pure magnetic ring, polarized protons and deuterons

access to EDM via motional electric field $c\vec{\beta} \times \vec{B}$

Ideal starting place for R&D and a proof-of-principle experiment

Pure magnetic ring

Due to fast precession longitudinal polarization component is 50% of time parallel 50% of time anti-parallel

to momentum

$$\frac{d\vec{S}}{dt} \propto \left(G\vec{B} + d\frac{m_0c}{q\hbar S}\vec{\beta} \times \vec{B} \right) \times \vec{S}$$

E* field in the particle rest frame tilts spin due to EDM 50% of time up and 50% of time down → no net EDM effect

Resonant rf Wien filter

Wien filter: Lorentz force vanishes \rightarrow no effect on EDM rotation Effect on horizontal precession:

The RF Wien filter

R&D at COSY

Thomas-BMT equation:

magnetic moment

neglect EDM

Forschungszentrum

$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = -\frac{q}{m_0} \left\{ G\vec{B} + \left(\frac{1}{\gamma^2 - 1} - G\right) \frac{\vec{\beta} \times \vec{E}}{c} + d\frac{m_0}{q\hbar S} (\vec{E} + c\vec{\beta} \times \vec{B}) \right\} \times \vec{S}$$
spin tune $\nu_s = \frac{|\vec{\Omega}|}{|\vec{\omega}_{cycl}|} = \gamma G$
 \rightarrow phase advance per turn $2\pi\nu_s$
R&D with deuterons
$$p = 1 \text{ GeV/c}$$

$$G = -0.14256177(72)$$

$$\nu_s \approx -0.161 \rightarrow f \approx 120 \text{ kHz}$$

(Some) Questions to be addressed

- Precise measurement of the precession frequency (spin tune)
 → also continuous and online
- Maximizing the spin coherence time (goal: ≈1000 s)
- Maintaining the spin direction
 - \rightarrow keep precession frequency stable
 - \rightarrow match frequency and phase to Wien filter radio frequency
- Study effects of field misalignments, orbit distortions, etc.

Cooler Synchrotron COSY

COSY provides cooled & polarized protons and deuterons with p = 0.3 - 3.7 GeV/c

24

Experimental setup

- inject and accelerate vertically polarized deuterons to p = 1 GeV/c
- 2. bunch and (pre-)cool
- turn spin by means of a RF solenoid into horizontal plane
- 4. extract beam slowly (within 100-1000 s) onto a carbon target, measure asymmetry and precisely determine spin precession

spin tune:

$$|\nu_s| = |\gamma G| = \frac{\text{spin precessions}}{\text{particle turn}} = \frac{f_{\text{prec}}}{f_{\text{rev}}} \approx \frac{120 \text{ kHz}}{750 \text{ kHz}} \approx 0.16$$

rf

solenoid

EDDA detector

precession

WASA detector

Polarimetry

- elastic deuteron-carbon scattering
- spin-dependent cross section:

$$\sigma(\varphi) = \sigma_0 \left(1 + \frac{3}{2} PA \sin \varphi \right)$$

$$\sigma_+ = \sigma(90^\circ) = \sigma_0 \left(1 + \frac{3}{2} PA \right)$$

$$\sigma_- = \sigma(-90^\circ) = \sigma_0 \left(1 - \frac{3}{2} PA \right)$$

asymmetry:

$$\varepsilon = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} = \frac{3}{2} P A$$

segmented detector

left – right asymmetry probes polarization along y up – down asymmetry probes polarization along x

Detector installations

Spin precession

Time-dependent asymmetry

$$\varepsilon_x = \frac{3}{2} PA \sin(2\pi v_s \cdot n_{\text{turns}})$$

Challenges

- precession frequency $f_{\rm prec} \approx 120 \text{ kHz}$
- v_s ≈ -0.16
- \rightarrow 6 turns / precession
- event rate ≈ 5000 s⁻¹
- \rightarrow 1 hit / 25 precessions
- \rightarrow no direct fit of the rates

Unfolding the spin precession

Forschungszentrum

Precise determination of the spin tune

30

Forschungszentrum

Spin tune: probing field imperfections

Spin Coherence Time (SCT)

Ensemble of $\approx 10^9$ deuterons: coherent precession needed!

Ideal case

- all particles have exactly the same momentum
- all particles travel the same path (orbit) in the ring
- all particles see the same fields

Example

$$\frac{\Delta\gamma}{\gamma} = \beta^2 \frac{\Delta p}{p} \approx 10^{-4} = \frac{\Delta\nu}{\nu}$$

$$\Delta\nu \approx 10^{-4} \cdot 0.16 \approx 10^{-5}$$
 revolution frequency
$$\Delta\varphi = 2\pi \cdot 10^{-5} \cdot 10^6 \text{s}^{-1} \approx 60 \text{ rad/s}$$

no

Spin Coherence Time (SCT)

- unbunched beam: $\frac{\Delta \gamma}{\gamma} \approx 10^{-5} \implies$ decoherence in < 1s
- bunching: eliminate effects on $\frac{\Delta p}{p}$ in 1st order $\rightarrow \tau \approx 20$ s
- correcting higher order effects using sextupoles

and (pre-) cooling $\rightarrow \tau \approx 1000 \text{ s}$

Spin tune: feedback system (phase lock)

Challenges:

- maintain resonance frequency and phase between spin precession and Wien filter
- maintain frozen spin condition in a future dedicated ring

COSY phase control determination

Implementation at COSY:

3.5

Forschungszentrum

Measurements with the Wien filter

Build-up of vertical component caused by

- EDM effect
- field and alignment errors in the ring

Systematic study by controlled changes of the device alignments and fields

Forschun**g**szentrum

Summary

- EDMs sensitive to new sources of CP violation
- Mechanism for CP violation: EDMs of charged hadrons needed
- Observable: spin precession in electric fields in storage rings
- COSY: ideal starting point for R&D and a pre-cursor experiment

Outlook

- pre-cursor experiment at COSY: first measurement with lower sensitivity on the way
- dedicated storage ring: different options are currently under investigation

